示例#1
0
def getLoader(db):
    if db == 'syn':
        loader = dataloader.TestLoader(f_test)
    elif db == 'human36':
        loader = dataloader.Human36Loader()
    elif db == 'cad120':
        loader = dataloader.Cad120Loader()
    elif db == 'biwi':
        loader = dataloader.BIWILoader()
    elif db == 'biwiid':
        loader = dataloader.BIWIIDLoader()
    return loader
示例#2
0
def test(model, modelin=args.model,outfile=args.out,feature_transform=args.feat_trans):

    # define model, dataloader, 3dmm eigenvectors, optimization method
    if modelin != "":
        model.load_state_dict(torch.load(modelin))
    model.eval()

    # mean shape and eigenvectors for 3dmm
    M = 100
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float()
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float()
    shape = mu_lm

    # sample from f testing set
    allerror_2d = []
    allerror_3d = []
    allerror_rel3d = []
    allerror_relf = []
    all_f = []
    all_depth = []

    seterror_3d = []
    seterror_rel3d = []
    seterror_relf = []
    seterror_2d = []
    f_vals = [i*100 for i in range(4,21)]
    for f_test in f_vals:
        # create dataloader
        data = dataloader.TestLoader(f_test)

        error_2d = []
        error_3d = []
        error_rel3d = []
        error_relf = []
        M = 100;
        N = 68;
        batch_size = 1;

        for k in range(len(data)):
            batch = data[k]
            x_cam_gt = batch['x_cam_gt']
            x_w_gt = batch['x_w_gt']
            f_gt = batch['f_gt']
            x_img = batch['x_img'].unsqueeze(0)
            x_img_gt = batch['x_img_gt']
            T_gt = batch['T_gt']
            sequence = batch['x_img'].reshape((M,N,2)).permute(0,2,1)

            all_depth.append(np.mean(T_gt[:,2]))
            all_f.append(f_gt.numpy()[0])

            one = torch.ones(batch_size,M*N,1)
            x_img_one = torch.cat([x_img,one],dim=2)

            # run the model
            out,_,_ = model(x_img_one.permute(0,2,1))
            betas = out[:,:199]
            fout = torch.relu(out[:,199])
            if torch.any(fout < 1): fout = fout+1

            # apply 3DMM model from predicted parameters
            alpha_matrix = torch.diag(betas.squeeze())
            shape_cov = torch.mm(lm_eigenvec,alpha_matrix)
            s = shape_cov.sum(1).view(68,3)
            #shape = (mu_lm + s)
            #shape = mu_lm
            #shape[:,2] = shape[:,2]*-1

            # run epnp using predicted shape and intrinsics
            K = torch.zeros((3,3))
            K[0,0] = fout;
            K[1,1] = fout;
            K[2,2] = 1;
            K[0,2] = 0;
            K[1,2] = 0;
            Xc,R,T = util.EPnP(sequence,shape,K)

            # get errors
            reproj_errors2 = util.getReprojError2(sequence,shape,R,T,K)
            reproj_errors3 = util.getReprojError3(x_cam_gt,shape,R,T)
            rel_errors = util.getRelReprojError3(x_cam_gt,shape,R,T)

            reproj_error = reproj_errors2.mean()
            reconstruction_error = reproj_errors3.mean()
            rel_error = rel_errors.mean()
            f_error = torch.abs(f_gt - fout) / f_gt

            allerror_3d.append(reproj_error.data.numpy())
            allerror_2d.append(reconstruction_error.data.numpy())
            allerror_rel3d.append(rel_error.data.numpy())

            error_2d.append(reproj_error.cpu().data.item())
            error_3d.append(reconstruction_error.cpu().data.item())
            error_rel3d.append(rel_error.cpu().data.item())
            error_relf.append(f_error.cpu().data.item())

            print(f"f/sequence: {f_test}/{k}  | f/fgt: {fout[0].item():.3f}/{f_gt.item():.3f} |  f_error_rel: {f_error.item():.4f}  | rmse: {reconstruction_error.item():.4f}  | rel rmse: {rel_error.item():.4f}    | 2d error: {reproj_error.item():.4f}")
            #end for

        avg_2d = np.mean(error_2d)
        avg_rel3d = np.mean(error_rel3d)
        avg_3d = np.mean(error_3d)
        avg_relf = np.mean(error_relf)

        seterror_2d.append(avg_2d)
        seterror_3d.append(avg_3d)
        seterror_rel3d.append(avg_rel3d)
        seterror_relf.append(avg_relf)
        #end for

    all_f = np.stack(all_f).flatten()
    all_d = np.stack(all_depth).flatten()
    allerror_2d = np.stack(allerror_2d).flatten()
    allerror_3d = np.stack(allerror_3d).flatten()
    allerror_rel3d = np.stack(allerror_rel3d).flatten()

    matdata = {}
    matdata['fvals'] = np.array(f_vals)
    matdata['all_f'] = np.array(all_f)
    matdata['all_d'] = np.array(all_depth)
    matdata['error_2d'] = allerror_2d
    matdata['error_3d'] = allerror_3d
    matdata['error_rel3d'] = allerror_rel3d
    matdata['seterror_2d'] = np.array(seterror_2d)
    matdata['seterror_3d'] = np.array(seterror_3d)
    matdata['seterror_rel3d'] = np.array(seterror_rel3d)
    matdata['seterror_relf'] = np.array(seterror_relf)
    scipy.io.savemat(outfile,matdata)

    print(f"MEAN seterror_2d: {np.mean(seterror_2d)}")
    print(f"MEAN seterror_3d: {np.mean(seterror_3d)}")
    print(f"MEAN seterror_rel3d: {np.mean(seterror_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(seterror_relf)}")
示例#3
0
def test(modelin=args.model,outfile=args.out,optimize=args.opt,ft=args.ft):
    # define model, dataloader, 3dmm eigenvectors, optimization method
    calib_net = PointNet(n=1,feature_transform=ft)
    sfm_net = PointNet(n=199,feature_transform=ft)
    if modelin != "":
        calib_path = os.path.join('model','calib_' + modelin)
        sfm_path = os.path.join('model','sfm_' + modelin)
        calib_net.load_state_dict(torch.load(calib_path))
        sfm_net.load_state_dict(torch.load(sfm_path))
    calib_net.eval()
    sfm_net.eval()

    # mean shape and eigenvectors for 3dmm
    M = 100
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float().detach()
    mu_lm[:,2] = mu_lm[:,2]*-1
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float().detach()
    sigma = torch.from_numpy(data3dmm.sigma).float().detach()
    sigma = torch.diag(sigma.squeeze())
    lm_eigenvec = torch.mm(lm_eigenvec, sigma)

    # sample from f testing set
    allerror_2d = []
    allerror_3d = []
    allerror_rel3d = []
    allerror_relf = []
    all_f = []
    all_fpred = []
    all_depth = []
    out_shape = []
    out_f = []
    seterror_3d = []
    seterror_rel3d = []
    seterror_relf = []
    seterror_2d = []
    f_vals = [i*100 for i in range(4,15)]

    # set random seed for reproducibility of test set
    np.random.seed(0)
    torch.manual_seed(0)
    for f_test in f_vals:
        # create dataloader
        loader = dataloader.TestLoader(f_test)

        f_pred = []
        shape_pred = []
        error_2d = []
        error_3d = []
        error_rel3d = []
        error_relf = []
        M = 100;
        N = 68;
        batch_size = 1;

        for j,data in enumerate(loader):
            if j >= 10: break
            # load the data
            x_cam_gt = data['x_cam_gt']
            shape_gt = data['x_w_gt']
            fgt = data['f_gt']
            x_img = data['x_img']
            x_img_gt = data['x_img_gt']

            depth = torch.norm(x_cam_gt.mean(2),dim=1)
            all_depth.append(depth.numpy())
            all_f.append(fgt.numpy()[0])

            ptsI = x_img.reshape((M,N,2)).permute(0,2,1)
            x = x_img.unsqueeze(0).permute(0,2,1)

            # run the model
            f = calib_net(x) + 300
            betas = sfm_net(x)
            betas = betas.squeeze(0).unsqueeze(-1)
            shape = mu_lm + torch.mm(lm_eigenvec,betas).squeeze().view(N,3)
            shape = shape - shape.mean(0).unsqueeze(0)

            # get motion measurement guess
            K = torch.zeros((3,3)).float()
            K[0,0] = f
            K[1,1] = f
            K[2,2] = 1
            km,c_w,scaled_betas,alphas = util.EPnP(ptsI,shape,K)
            _, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI)
            error_time = util.getTimeConsistency(shape,R,T)
            if error_time > 10:
                mode='walk'
            else:
                mode='still'

            # apply dual optimization
            if optimize:
                calib_net.load_state_dict(torch.load(calib_path))
                sfm_net.load_state_dict(torch.load(sfm_path))
                shape,K,R,T = dualoptimization(x,calib_net,sfm_net,shape_gt=shape_gt,fgt=fgt,mode=mode)
                f = K[0,0].detach()
            else:
                K = torch.zeros(3,3).float()
                K[0,0] = f
                K[1,1] = f
                K[2,2] = 1
                km,c_w,scaled_betas,alphas = util.EPnP(ptsI,shape,K)
                Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI)

            # get errors
            reproj_errors2 = util.getReprojError2(ptsI,shape,R,T,K,show=False)
            reproj_errors3 = torch.norm(shape_gt - shape,dim=1).mean()
            rel_errors =  util.getRelReprojError3(x_cam_gt,shape,R,T)

            reproj_error = reproj_errors2.mean()
            reconstruction_error = reproj_errors3.mean()
            rel_error = rel_errors.mean()
            f_error = torch.abs(fgt - f) / fgt

            # save final prediction
            f_pred.append(f.detach().cpu().item())
            shape_pred.append(shape.detach().cpu().numpy())

            all_fpred.append(f.detach().data.numpy())
            allerror_3d.append(reproj_error.data.numpy())
            allerror_2d.append(reconstruction_error.data.numpy())
            allerror_rel3d.append(rel_error.data.numpy())
            error_2d.append(reproj_error.cpu().data.item())
            error_3d.append(reconstruction_error.cpu().data.item())
            error_rel3d.append(rel_error.cpu().data.item())
            error_relf.append(f_error.cpu().data.item())

            print(f"f/sequence: {f_test}/{j}  | f/fgt: {f.item():.3f}/{fgt.item():.3f} |  f_error_rel: {f_error.item():.4f}  | rmse: {reconstruction_error.item():.4f}  | rel rmse: {rel_error.item():.4f}    | 2d error: {reproj_error.item():.4f}")

        avg_2d = np.mean(error_2d)
        avg_rel3d = np.mean(error_rel3d)
        avg_3d = np.mean(error_3d)
        avg_relf = np.mean(error_relf)

        seterror_2d.append(avg_2d)
        seterror_3d.append(avg_3d)
        seterror_rel3d.append(avg_rel3d)
        seterror_relf.append(avg_relf)
        out_f.append(np.stack(f_pred))
        out_shape.append(np.concatenate(shape_pred,axis=0))
        print(f"f_error_rel: {avg_relf:.4f}  | rel rmse: {avg_rel3d:.4f}    | 2d error: {avg_2d:.4f} |  rmse: {avg_3d:.4f}  |")

    # save output
    out_shape = np.stack(out_shape)
    out_f = np.stack(out_f)
    all_f = np.stack(all_f).flatten()
    all_fpred = np.stack(all_fpred).flatten()
    all_d = np.stack(all_depth).flatten()
    allerror_2d = np.stack(allerror_2d).flatten()
    allerror_rel3d = np.stack(allerror_rel3d).flatten()

    matdata = {}
    matdata['fvals'] = np.array(f_vals)
    matdata['all_f'] = np.array(all_f)
    matdata['all_fpred'] = np.array(all_fpred)
    matdata['all_d'] = np.array(all_depth)
    matdata['error_2d'] = allerror_2d
    matdata['error_3d'] = allerror_3d
    matdata['error_rel3d'] = allerror_rel3d
    matdata['seterror_2d'] = np.array(seterror_2d)
    matdata['seterror_3d'] = np.array(seterror_3d)
    matdata['seterror_rel3d'] = np.array(seterror_rel3d)
    matdata['seterror_relf'] = np.array(seterror_relf)
    matdata['shape'] = np.stack(out_shape)
    matdata['f'] = np.stack(out_f)
    scipy.io.savemat(outfile,matdata)

    print(f"MEAN seterror_2d: {np.mean(seterror_2d)}")
    print(f"MEAN seterror_3d: {np.mean(seterror_3d)}")
    print(f"MEAN seterror_rel3d: {np.mean(seterror_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(seterror_relf)}")

    return np.mean(seterror_relf)
示例#4
0
#####################################################
# Start main
#####################################################


folder = '32_a'
acc = '0.6626940598821827'
TEST = False
GAUS = True

enc_last = torch.load(f'{folder}/enc_last_{acc}.pkl')
encoder = torch.load(f'{folder}/encoder_{acc}.pkl')
decoder = torch.load(f'{folder}/decoder_{acc}.pkl')

if TEST:
    test_loader = hand_DL.TestLoader('test')
    print_loss_total = 0
    bleu_total = 0
    test_len = len(test_loader)
    criterion = nn.CrossEntropyLoss()
    for idx, data in enumerate(test_loader):
        x = torch.from_numpy(data[0]).to(device)
        y = torch.from_numpy(data[1]).to(device)

        loss, bleu = test(x, int(data[2]), y, int(data[3]), encoder, decoder, enc_last, criterion)
        print_loss_total += loss
        bleu_total += bleu
    print_loss_total /= test_len
    bleu_total /= test_len
    print(f'Test loss: {print_loss_total}, bleu: {bleu_total}')
def test_sfm(modelin=args.model, outfile=args.out, optimize=args.opt):

    # define model, dataloader, 3dmm eigenvectors, optimization method
    calib_net = CalibrationNet3(n=1)
    sfm_net = CalibrationNet3(n=199)
    calib_path = os.path.join('model', 'calib_' + modelin)
    sfm_path = os.path.join('model', 'sfm_' + modelin)

    # mean shape and eigenvectors for 3dmm
    M = 100
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float().detach()
    mu_lm[:, 2] = mu_lm[:, 2] * -1
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float().detach()
    sigma = torch.from_numpy(data3dmm.sigma).float().detach()
    sigma = torch.diag(sigma.squeeze())
    lm_eigenvec = torch.mm(lm_eigenvec, sigma)

    # sample from f testing set
    allerror_2d = []
    allerror_3d = []
    allerror_rel3d = []
    allerror_relf = []
    all_f = []
    all_fpred = []
    all_depth = []
    out_shape = []
    out_f = []

    seterror_3d = []
    seterror_rel3d = []
    seterror_relf = []
    seterror_2d = []
    f_vals = [i * 100 for i in range(4, 15)]
    for f_test in f_vals:
        # create dataloader
        #f_test = 1000
        loader = dataloader.TestLoader(f_test)

        f_pred = []
        shape_pred = []
        error_2d = []
        error_3d = []
        error_rel3d = []
        error_relf = []
        M = 100
        N = 68
        batch_size = 1

        training_pred = np.zeros((10, 100, 68, 3))
        training_gt = np.zeros((10, 100, 68, 3))

        for j, data in enumerate(loader):
            if j == 10: break
            # load the data
            x_cam_gt = data['x_cam_gt']
            shape_gt = data['x_w_gt']
            fgt = data['f_gt']
            x_img = data['x_img']
            x_img_gt = data['x_img_gt']
            T_gt = data['T_gt']

            all_depth.append(np.mean(T_gt[:, 2]))
            all_f.append(fgt.numpy()[0])

            ptsI = x_img.reshape((M, N, 2)).permute(0, 2, 1)
            x = ptsI.unsqueeze(0).permute(0, 2, 1, 3)

            # test camera calibration
            #calib_net.load_state_dict(torch.load(calib_path))
            opt2 = torch.optim.Adam(sfm_net.parameters(), lr=1e-5)
            sfm_net.eval()
            trainfc(sfm_net)
            f = 2000
            for iter in itertools.count():
                opt2.zero_grad()

                # shape prediction
                betas = sfm_net.forward2(x)
                betas = torch.clamp(betas, -20, 20)
                shape = torch.sum(betas * lm_eigenvec, 1)
                shape = shape.reshape(68, 3) + mu_lm
                shape = shape - shape.mean(0).unsqueeze(0)

                rmse = torch.norm(shape_gt - shape, dim=1).mean().detach()
                K = torch.zeros((3, 3)).float()
                K[0, 0] = f
                K[1, 1] = f
                K[2, 2] = 1
                km, c_w, scaled_betas, alphas = util.EPnP(ptsI, shape, K)
                Xc, R, T, mask = util.optimizeGN(km, c_w, scaled_betas, alphas,
                                                 shape, ptsI, K)
                error2d = util.getReprojError2(ptsI,
                                               shape,
                                               R,
                                               T,
                                               K,
                                               show=False,
                                               loss='l2')
                error_time = util.getTimeConsistency(shape, R, T)

                loss = error2d.mean() + 0.01 * error_time
                loss.backward()
                opt2.step()
                print(
                    f"iter: {iter} | error: {loss.item():.3f} | error2d: {error2d.mean().item():.3f} | rmse: {rmse.item():.3f} "
                )

                if iter == 100: break
                training_pred[j, iter, :, :] = shape.detach().cpu().numpy()
                training_gt[j, iter, :, :] = shape_gt.detach().cpu().numpy()

            # get errors
            reproj_errors2 = util.getReprojError2(ptsI,
                                                  shape,
                                                  R,
                                                  T,
                                                  K,
                                                  show=False)
            reproj_errors3 = torch.norm(shape_gt - shape, dim=1).mean()
            rel_errors = util.getRelReprojError3(x_cam_gt, shape, R, T)

            reproj_error = reproj_errors2.mean()
            reconstruction_error = reproj_errors3.mean()
            rel_error = rel_errors.mean()
            f_error = torch.abs(fgt - f) / fgt

            # save final prediction
            shape_pred.append(shape.detach().cpu().numpy())

            allerror_3d.append(reproj_error.data.numpy())
            allerror_2d.append(reconstruction_error.data.numpy())
            allerror_rel3d.append(rel_error.data.numpy())
            error_2d.append(reproj_error.cpu().data.item())
            error_3d.append(reconstruction_error.cpu().data.item())
            error_rel3d.append(rel_error.cpu().data.item())
            error_relf.append(f_error.cpu().data.item())

            print(
                f"f/sequence: {f_test}/{j}  | f/fgt: {f:.3f}/{fgt.item():.3f} |  f_error_rel: {f_error.item():.4f}  | rmse: {reconstruction_error.item():.4f}  | rel rmse: {rel_error.item():.4f}    | 2d error: {reproj_error.item():.4f}"
            )

        avg_2d = np.mean(error_2d)
        avg_rel3d = np.mean(error_rel3d)
        avg_3d = np.mean(error_3d)
        avg_relf = np.mean(error_relf)

        seterror_2d.append(avg_2d)
        seterror_3d.append(avg_3d)
        seterror_rel3d.append(avg_rel3d)
        seterror_relf.append(avg_relf)
        out_shape.append(np.stack(shape_pred, axis=0))
        print(
            f"f_error_rel: {avg_relf:.4f}  | rel rmse: {avg_rel3d:.4f}    | 2d error: {reproj_error.item():.4f} |  rmse: {avg_3d:.4f}  |"
        )

    all_f = np.stack(all_f).flatten()
    all_d = np.stack(all_depth).flatten()
    allerror_2d = np.stack(allerror_2d).flatten()
    allerror_3d = np.stack(allerror_3d).flatten()
    allerror_rel3d = np.stack(allerror_rel3d).flatten()

    matdata = {}
    matdata['training_pred'] = training_pred
    matdata['training_gt'] = training_gt
    matdata['fvals'] = np.array(f_vals)
    matdata['all_f'] = np.array(all_f)
    matdata['all_d'] = np.array(all_depth)
    matdata['error_2d'] = allerror_2d
    matdata['error_3d'] = allerror_3d
    matdata['error_rel3d'] = allerror_rel3d
    matdata['seterror_2d'] = np.array(seterror_2d)
    matdata['seterror_3d'] = np.array(seterror_3d)
    matdata['seterror_rel3d'] = np.array(seterror_rel3d)
    matdata['seterror_relf'] = np.array(seterror_relf)
    scipy.io.savemat(outfile, matdata)

    print(f"MEAN seterror_2d: {np.mean(seterror_2d)}")
    print(f"MEAN seterror_3d: {np.mean(seterror_3d)}")
    print(f"MEAN seterror_rel3d: {np.mean(seterror_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(seterror_relf)}")
def trainIters(encoder, decoder, enc_last, n_iters, print_every=1000, plot_every=100, learning_rate=0.01):
    train_loss_total = 0
    train_loss_list = []
    train_KL_total = 0
    train_KL_list = []
    test_bleu_list = []

    print_loss_total = 0  # Reset every print_every
    kl_total = 0
    bleu_total = 0

    encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate)
    decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate)
    enc_last_optimizer = optim.SGD(enc_last.parameters(), lr=learning_rate)
    criterion = nn.CrossEntropyLoss()
    train_data = hand_DL.TrainLoader('train')
    train_loader = Data.DataLoader(dataset = train_data, batch_size = 1, shuffle = True, num_workers=2)
    data_len = len(train_loader)
    cnt = 0
    tot_cnt = 0
    highest_score = 0
    for iter in range(30, n_iters+1):
        print(f"Epoch: {iter}")
        
        global KLD_weight
        global highest_bleu
        global teacher_forcing_ratio

        KLD_weight = 0
        cnt = 0
        print_loss_total = 0
        bleu_total = 0
        kl_total = 0

        # ######################
        # slope = 0.01
        # KLD_weight = iter * slope
        # if KLD_weight > 1.0:
        #     KLD_weight = 1.0
        # ###################
        # slope = 0.01
        # teacher_forcing_ratio = 1.0 - (slope * iter)
        # if teacher_forcing_ratio <= 0.0:
        #     teacher_forcing_ratio = 0.0
        # ######################

        for idx, data in enumerate(train_loader):
            i_cond = data[0][0]
            t_cond = data[1][0]
            x = data[0][1].to(device)
            y = data[1][1].to(device)

            loss, bleu, kl_loss = train(x, i_cond, y, t_cond, encoder,
                        decoder, enc_last, encoder_optimizer, decoder_optimizer, enc_last_optimizer, criterion)
            kl_total += kl_loss
            print_loss_total += loss
            bleu_total += bleu
            KLD_constraint = 1
            if bleu > highest_bleu:
                highest_bleu = bleu
            if bleu > 0.8:
                teacher_forcing_ratio = 0
            elif bleu > 0.7:
                teacher_forcing_ratio = 0.1
            elif bleu > 0.6:
                teacher_forcing_ratio = 0.2
                KLD_constraint = 0.95
            elif bleu > 0.5:
                teacher_forcing_ratio = 0.3
                KLD_constraint = 0.9
            elif bleu > 0.4:
                teacher_forcing_ratio = 0.4
                KLD_constraint = 0.85
            elif bleu > 0.3:
                teacher_forcing_ratio = 0.5
                KLD_constraint = 0.8
            elif bleu > 0.2:
                teacher_forcing_ratio = 0.6
                KLD_constraint = 0.6
            else:
                teacher_forcing_ratio = 0.8
                KLD_constraint = 0.5

            KLD_weight += 0.0001
            if KLD_weight > KLD_constraint:
                KLD_weight = KLD_constraint

            cnt += 1
            tot_cnt += 1

            if idx % print_every == 0:
                train_KL_total += kl_total
                train_loss_total += print_loss_total
                print_loss_avg = print_loss_total/cnt
                bleu_avg = bleu_total/cnt
                print(f'Iter {idx}/{data_len} loss: {print_loss_avg}, kl_loss: {kl_total/cnt}, bleu: {bleu_avg}')
                cnt = 0
                print_loss_total = 0
                bleu_total = 0
                kl_total = 0

        test_loader = hand_DL.TestLoader('test')
        print_loss_total = 0
        bleu_total = 0
        test_len = len(test_loader)
        for idx, data in enumerate(test_loader):
            x = torch.from_numpy(data[0]).to(device)
            y = torch.from_numpy(data[1]).to(device)

            loss, bleu = test(x, int(data[2]), y, int(data[3]), encoder, decoder, enc_last, criterion)
            print_loss_total += loss
            bleu_total += bleu
        print_loss_total /= test_len
        bleu_total /= test_len
        print(f'Test loss: {print_loss_total}, bleu: {bleu_total}')
        
        with open(f'{latent_hidden_size}/train_loss', 'a') as f:
            f.write(f'{str(train_loss_total/tot_cnt)}\n')
        with open(f'{latent_hidden_size}/train_KL_loss', 'a') as f:
            f.write(f'{str(train_KL_total/tot_cnt)}\n')
        with open(f'{latent_hidden_size}/test_bleu', 'a') as f:
            f.write(f'{str(bleu_total)}\n')

        test_bleu_list.append(bleu_total)
        train_loss_list.append(train_loss_total/tot_cnt)
        train_KL_list.append(train_KL_total/tot_cnt)
        train_loss_total = 0
        train_KL_total = 0
        tot_cnt = 0

        if bleu_total > highest_score:
            highest_score = bleu_total
            torch.save(encoder, f'/home/karljackab/DL/lab5/{latent_hidden_size}/encoder_{str(bleu_total)}.pkl')
            torch.save(decoder, f'/home/karljackab/DL/lab5/{latent_hidden_size}/decoder_{str(bleu_total)}.pkl')
            torch.save(enc_last, f'/home/karljackab/DL/lab5/{latent_hidden_size}/enc_last_{str(bleu_total)}.pkl')
            print('save model')
示例#7
0
def test(modelin=args.model,outfile=args.out,optimize=args.opt):

    # define model, dataloader, 3dmm eigenvectors, optimization method
    calib_net = CalibrationNet3(n=1)
    sfm_net = CalibrationNet3(n=199)
    if modelin != "":
        calib_path = os.path.join('model','calib_' + modelin)
        sfm_path = os.path.join('model','sfm_' + modelin)
        calib_net.load_state_dict(torch.load(calib_path))
        sfm_net.load_state_dict(torch.load(sfm_path))
    calib_net.eval()
    sfm_net.eval()

    # mean shape and eigenvectors for 3dmm
    M = 100
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float().detach()
    mu_lm[:,2] = mu_lm[:,2]*-1
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float().detach()
    sigma = torch.from_numpy(data3dmm.sigma).float().detach()
    sigma = torch.diag(sigma.squeeze())
    lm_eigenvec = torch.mm(lm_eigenvec, sigma)

    # sample from f testing set
    allerror_2d = []
    allerror_3d = []
    allerror_rel3d = []
    allerror_relf = []
    all_f = []
    all_fpred = []
    all_depth = []
    out_shape = []
    out_f = []

    seterror_3d = []
    seterror_rel3d = []
    seterror_relf = []
    seterror_2d = []
    f_vals = [i*100 for i in range(4,15)]
    for f_test in f_vals:
        # create dataloader
        #f_test = 1000
        loader = dataloader.TestLoader(f_test)

        f_pred = []
        shape_pred = []
        error_2d = []
        error_3d = []
        error_rel3d = []
        error_relf = []
        M = 100;
        N = 68;
        batch_size = 1;

        for j,data in enumerate(loader):
            if j == 10: break
            # load the data
            x_cam_gt = data['x_cam_gt']
            shape_gt = data['x_w_gt']
            fgt = data['f_gt']
            x_img = data['x_img']
            x_img_gt = data['x_img_gt']
            T_gt = data['T_gt']

            all_depth.append(np.mean(T_gt[:,2]))
            all_f.append(fgt.numpy()[0])

            ptsI = x_img.reshape((M,N,2)).permute(0,2,1)
            x = ptsI.unsqueeze(0).permute(0,2,1,3)

            # run the model
            f = calib_net(x) + 300
            betas = sfm_net(x)
            betas = betas.squeeze(0).unsqueeze(-1)
            shape = mu_lm + torch.mm(lm_eigenvec,betas).squeeze().view(N,3)

            # additional optimization on initial solution
            if optimize:
                calib_net.load_state_dict(torch.load(calib_path))
                sfm_net.load_state_dict(torch.load(sfm_path))
                calib_net.eval()
                sfm_net.eval()
                trainfc(calib_net)
                trainfc(sfm_net)
                opt1 = torch.optim.Adam(calib_net.parameters(),lr=1e-4)
                opt2 = torch.optim.Adam(sfm_net.parameters(),lr=1e-2)
                curloss = 100
                for outerloop in itertools.count():

                    # camera calibration
                    shape = shape.detach()
                    for iter in itertools.count():
                        opt1.zero_grad()
                        f = calib_net.forward2(x) + 300
                        K = torch.zeros(3,3).float()
                        K[0,0] = f
                        K[1,1] = f
                        K[2,2] = 1

                        f_error = torch.mean(torch.abs(f - fgt))
                        rmse = torch.norm(shape_gt - shape,dim=1).mean()

                        # differentiable PnP pose estimation
                        km,c_w,scaled_betas, alphas = util.EPnP(ptsI,shape,K)
                        Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)
                        error2d = util.getReprojError2(ptsI,shape,R,T,K,show=False,loss='l2')
                        #error2d = util.getReprojError2_(ptsI,Xc,K,show=True,loss='l2')
                        error_time = util.getTimeConsistency(shape,R,T)

                        loss = error2d.mean() + 0.01*error_time
                        if iter == 5: break
                        loss.backward()
                        opt1.step()
                        print(f"iter: {iter} | error: {loss.item():.3f} | f/fgt: {f.item():.1f}/{fgt[0].item():.1f} | error2d: {error2d.mean().item():.3f} | rmse: {rmse.item():.3f} ")

                    # sfm
                    f = f.detach()
                    for iter in itertools.count():
                        opt2.zero_grad()

                        # shape prediction
                        betas = sfm_net.forward2(x)
                        shape = torch.sum(betas * lm_eigenvec,1)
                        shape = shape.reshape(68,3) + mu_lm
                        shape = shape - shape.mean(0).unsqueeze(0)
                        K = torch.zeros((3,3)).float()
                        K[0,0] = f
                        K[1,1] = f
                        K[2,2] = 1

                        #rmse = torch.norm(shape_gt - shape,dim=1).mean().detach()
                        rmse = torch.norm(shape_gt - shape,dim=1).mean().detach()

                        # differentiable PnP pose estimation
                        km,c_w,scaled_betas,alphas = util.EPnP(ptsI,shape,K)
                        Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)
                        error2d = util.getReprojError2(ptsI,shape,R,T,K,show=False,loss='l2')
                        error_time = util.getTimeConsistency(shape,R,T)

                        loss = error2d.mean() + 0.01*error_time
                        if iter == 5: break
                        if iter > 10 and prev_loss < loss:
                            break
                        else:
                            prev_loss = loss
                        loss.backward()
                        opt2.step()
                        print(f"iter: {iter} | error: {loss.item():.3f} | f/fgt: {f.item():.1f}/{fgt[0].item():.1f} | error2d: {error2d.mean().item():.3f} | rmse: {rmse.item():.3f} ")

                    # closing condition for outerloop on dual objective
                    if torch.abs(curloss - loss) < 0.01: break
                    curloss = loss
            else:
                K = torch.zeros(3,3).float()
                K[0,0] = f
                K[1,1] = f
                K[2,2] = 1
                km,c_w,scaled_betas,alphas = util.EPnP(ptsI,shape,K)
                Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)

            all_fpred.append(f.detach().numpy()[0])

            # get errors
            reproj_errors2 = util.getReprojError2(ptsI,shape,R,T,K,show=False)
            reproj_errors3 = torch.norm(shape_gt - shape,dim=1).mean()
            rel_errors =  util.getRelReprojError3(x_cam_gt,shape,R,T)

            reproj_error = reproj_errors2.mean()
            reconstruction_error = reproj_errors3.mean()
            rel_error = rel_errors.mean()
            f_error = torch.abs(fgt - f) / fgt

            # save final prediction
            f_pred.append(f.detach().cpu().item())
            shape_pred.append(shape.detach().cpu().numpy())

            allerror_3d.append(reproj_error.data.numpy())
            allerror_2d.append(reconstruction_error.data.numpy())
            allerror_rel3d.append(rel_error.data.numpy())
            error_2d.append(reproj_error.cpu().data.item())
            error_3d.append(reconstruction_error.cpu().data.item())
            error_rel3d.append(rel_error.cpu().data.item())
            error_relf.append(f_error.cpu().data.item())

            print(f"f/sequence: {f_test}/{j}  | f/fgt: {f[0].item():.3f}/{fgt.item():.3f} |  f_error_rel: {f_error.item():.4f}  | rmse: {reconstruction_error.item():.4f}  | rel rmse: {rel_error.item():.4f}    | 2d error: {reproj_error.item():.4f}")

        avg_2d = np.mean(error_2d)
        avg_rel3d = np.mean(error_rel3d)
        avg_3d = np.mean(error_3d)
        avg_relf = np.mean(error_relf)

        seterror_2d.append(avg_2d)
        seterror_3d.append(avg_3d)
        seterror_rel3d.append(avg_rel3d)
        seterror_relf.append(avg_relf)
        out_f.append(np.stack(f_pred))
        out_shape.append(np.stack(shape_pred,axis=0))
        print(f"f_error_rel: {avg_relf:.4f}  | rel rmse: {avg_rel3d:.4f}    | 2d error: {reproj_error.item():.4f} |  rmse: {avg_3d:.4f}  |")

    out_shape = np.stack(out_shape)
    out_f = np.stack(out_f)
    all_f = np.stack(all_f).flatten()
    all_fpred = np.stack(all_fpred).flatten()
    all_d = np.stack(all_depth).flatten()
    allerror_2d = np.stack(allerror_2d).flatten()
    allerror_3d = np.stack(allerror_3d).flatten()
    allerror_rel3d = np.stack(allerror_rel3d).flatten()

    matdata = {}
    matdata['fvals'] = np.array(f_vals)
    matdata['all_f'] = np.array(all_f)
    matdata['all_fpred'] = np.array(all_fpred)
    matdata['all_d'] = np.array(all_depth)
    matdata['error_2d'] = allerror_2d
    matdata['error_3d'] = allerror_3d
    matdata['error_rel3d'] = allerror_rel3d
    matdata['seterror_2d'] = np.array(seterror_2d)
    matdata['seterror_3d'] = np.array(seterror_3d)
    matdata['seterror_rel3d'] = np.array(seterror_rel3d)
    matdata['seterror_relf'] = np.array(seterror_relf)
    matdata['shape'] = np.stack(out_shape)
    matdata['f'] = np.stack(out_f)
    scipy.io.savemat(outfile,matdata)

    print(f"MEAN seterror_2d: {np.mean(seterror_2d)}")
    print(f"MEAN seterror_3d: {np.mean(seterror_3d)}")
    print(f"MEAN seterror_rel3d: {np.mean(seterror_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(seterror_relf)}")
示例#8
0
def test(model,
         modelin=args.model,
         outfile=args.out,
         feature_transform=args.feat_trans):

    # define model, dataloader, 3dmm eigenvectors, optimization method
    if modelin != "":
        model.load_state_dict(torch.load(modelin))
    model.eval()

    # mean shape and eigenvectors for 3dmm
    M = 100
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float()
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float()
    shape = mu_lm

    # sample from f testing set
    allerror_2d = []
    allerror_3d = []
    allerror_rel3d = []
    allerror_relf = []
    all_f = []
    all_depth = []

    seterror_3d = []
    seterror_rel3d = []
    seterror_relf = []
    seterror_2d = []
    f_vals = [i * 100 for i in range(4, 21)]
    for f_test in f_vals:
        # create dataloader
        data = dataloader.TestLoader(f_test)

        error_2d = []
        error_3d = []
        error_rel3d = []
        error_relf = []
        M = 100
        N = 68
        batch_size = 1

        for k in range(len(data)):
            batch = data[4]
            x_cam_gt = batch['x_cam_gt']
            x_w_gt = batch['x_w_gt']
            f_gt = batch['f_gt']
            x_img = batch['x_img'].unsqueeze(0)
            x_img_gt = batch['x_img_gt']
            T_gt = batch['T_gt']
            sequence = batch['x_img'].reshape((M, N, 2)).permute(0, 2, 1)

            all_depth.append(np.mean(T_gt[:, 2]))
            all_f.append(f_gt.numpy()[0])

            x = x_img.reshape((batch_size, M, N, 2)).permute(0, 3, 2, 1) / 640
            x_one = torch.cat(
                [x.squeeze().permute(2, 0, 1) * 640,
                 torch.ones(M, 1, N)],
                dim=1)

            # run the model
            out = model(x)
            betas = out[:, :199]
            fout = torch.relu(out[:, 199])
            if torch.any(fout < 1): fout = fout + 1

            # apply 3DMM model from predicted parameters
            alpha_matrix = torch.diag(betas.squeeze())
            shape_cov = torch.mm(lm_eigenvec, alpha_matrix)
            s = shape_cov.sum(1).view(68, 3)
            #shape = (mu_lm + s)
            #shape = mu_lm
            #shape[:,2] = shape[:,2]*-1

            # create variables and optimizer for variables as SGD
            # run epnp using predicted shape and intrinsics
            varf = Variable(fout, requires_grad=True)
            K = torch.zeros((3, 3))
            K[0, 0] = varf
            K[1, 1] = varf
            K[2, 2] = 1
            K[0, 2] = 0
            K[1, 2] = 0
            Xc, R, T = util.EPnP(sequence, shape, K)
            tmpT = T.detach()
            tmpR = R.detach()
            varR = Variable(R, requires_grad=True)
            varT = Variable(T, requires_grad=True)
            optimizer = torch.optim.Adam([varR, varT], lr=1e-1)

            # optimize results for image consistency
            ferror = []
            losses = []
            minerror = 10000
            for iter in itertools.count():
                K = torch.zeros((3, 3))
                K[0, 0] = varf
                K[1, 1] = varf
                K[2, 2] = 1
                K[0, 2] = 0
                K[1, 2] = 0

                R = varR
                T = varT
                Xc, _, _ = util.EPnP(sequence, shape, K)
                #Xc,R,T = util.EPnP(sequence,shape,K)
                optimizer.zero_grad()

                # k inverse
                kinv = torch.zeros(3, 3).float()
                kinv[0, 0] = 1 / varf
                kinv[1, 1] = 1 / varf
                kinv[2, 2] = 1

                # get errors
                reproj_errors2 = util.getReprojError2(sequence, shape, R, T, K)
                #reproj_errors3 = util.getReprojError3(x_cam_gt,shape,varR,varT)
                error_3d = util.getRelReprojError3(x_cam_gt, shape, R,
                                                   T).mean()
                #error_3d = util.getPCError(x_cam_gt,x_one.permute(0,2,1),torch.stack(100*[kinv]),mode='l2')

                error_Rconsistency = util.getRConsistency(R)
                error_Tconsistency = util.getTConsistency(T) * 0.001
                error_3dconsistency = util.get3DConsistency(
                    sequence, shape, kinv, R, T)
                reproj_error = torch.mean(reproj_errors2)

                # determine convergence
                loss = error_3dconsistency
                if loss < minerror:
                    minerror = loss
                    minf = varf.item()
                    minR = R
                    minT = T
                    convergence = 0
                else:
                    convergence += 1

                loss.backward()
                optimizer.step()

                f = util.solvef(sequence, Xc.detach())
                print(f)
                #if varf < 0: varf = varf*-1
                delta = K[0, 0] - varf
                direction = torch.sign(delta)
                error_f = torch.abs(varf - f_gt) / f_gt
                ferror.append(error_f.item())
                losses.append(loss.item())

                print(
                    f"iter: {iter} | loss: {loss.item():.3f} | f/fgt: {varf.item():.3f}/{f_gt.item():.3f} | 2d error: {reproj_error.item():.3f} | error R: {error_Rconsistency.item():.3f} | error T: {error_Tconsistency.item():.3f} | error 3d: {error_3dconsistency.item():.3f} | GT RMSE: {error_3d.item():.3f} | delta: {delta.item():.3f}"
                )
                if convergence == 100: break

            data = {'ferror': np.array(ferror), 'loss': np.array(losses)}
            scipy.io.savemat("optimizationlr1.mat", data)
            quit()

            reconstruction_error = reproj_errors3.mean()
            rel_error = rel_errors.mean()
            f_error = torch.abs(f_gt - fout) / f_gt

            allerror_3d.append(reproj_error.data.numpy())
            allerror_2d.append(reconstruction_error.data.numpy())
            allerror_rel3d.append(rel_error.data.numpy())

            error_2d.append(reproj_error.cpu().data.item())
            error_3d.append(reconstruction_error.cpu().data.item())
            error_rel3d.append(rel_error.cpu().data.item())
            error_relf.append(f_error.cpu().data.item())

            print(
                f"f/sequence: {f_test}/{k}  | f/fgt: {fout[0].item():.3f}/{f_gt.item():.3f} |  f_error_rel: {f_error.item():.4f}  | rmse: {reconstruction_error.item():.4f}  | rel rmse: {rel_error.item():.4f}    | 2d error: {reproj_error.item():.4f}"
            )
            #end for

        avg_2d = np.mean(error_2d)
        avg_rel3d = np.mean(error_rel3d)
        avg_3d = np.mean(error_3d)
        avg_relf = np.mean(error_relf)

        seterror_2d.append(avg_2d)
        seterror_3d.append(avg_3d)
        seterror_rel3d.append(avg_rel3d)
        seterror_relf.append(avg_relf)
        #end for

    all_f = np.stack(all_f).flatten()
    all_d = np.stack(all_depth).flatten()
    allerror_2d = np.stack(allerror_2d).flatten()
    allerror_3d = np.stack(allerror_3d).flatten()
    allerror_rel3d = np.stack(allerror_rel3d).flatten()

    matdata = {}
    matdata['fvals'] = np.array(f_vals)
    matdata['all_f'] = np.array(all_f)
    matdata['all_d'] = np.array(all_depth)
    matdata['error_2d'] = allerror_2d
    matdata['error_3d'] = allerror_3d
    matdata['error_rel3d'] = allerror_rel3d
    matdata['seterror_2d'] = np.array(seterror_2d)
    matdata['seterror_3d'] = np.array(seterror_3d)
    matdata['seterror_rel3d'] = np.array(seterror_rel3d)
    matdata['seterror_relf'] = np.array(seterror_relf)
    scipy.io.savemat(outfile, matdata)

    print(f"MEAN seterror_2d: {np.mean(seterror_2d)}")
    print(f"MEAN seterror_3d: {np.mean(seterror_3d)}")
    print(f"MEAN seterror_rel3d: {np.mean(seterror_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(seterror_relf)}")
示例#9
0
def test(modelin=args.model,outfile=args.out,feature_transform=args.ft):

    # define model, dataloader, 3dmm eigenvectors, optimization method
    #if modelin != "":
    #    model.load_state_dict(torch.load(modelin))
    #model.eval()
    #model.cuda()

    # mean shape and eigenvectors for 3dmm
    M = 100
    N = 68
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float()
    mu_lm[:,2] = mu_lm[:,2]*-1
    le = torch.mean(mu_lm[36:42,:],axis=0)
    re = torch.mean(mu_lm[42:48,:],axis=0)
    ipd = torch.norm(le - re)
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float()
    #optimizer = torch.optim.Adam(model.parameters(),lr=1e-2)

    # sample from f testing set
    allerror_2d = []
    allerror_3d = []
    allerror_rel3d = []
    allerror_relf = []
    all_f = []
    all_fpred = []
    all_depth = []
    out_shape = []
    out_f = []
    seterror_3d = []
    seterror_rel3d = []
    seterror_relf = []
    seterror_2d = []
    f_vals = [i*100 for i in range(4,15)]

    # set random seed for reproducibility of test set
    for f_test in f_vals:
        # create dataloader
        loader = dataloader.TestLoader(f_test)

        f_pred = []
        shape_pred = []
        error_2d = []
        error_3d = []
        error_rel3d = []
        error_relf = []
        M = 100;
        N = 68;
        batch_size = 1;

        for j, data in enumerate(loader):
            if j == 10: break
            # create bpnp camera calibration model
            calib_net= (1.1*torch.randn(1)).requires_grad_()

            # create bpnp sfm model
            sfm_net  = torchvision.models.vgg11()
            sfm_net.classifier = torch.nn.Linear(25088,N*3)

            # load the data
            x_cam_gt = data['x_cam_gt']
            shape_gt = data['x_w_gt']
            fgt = data['f_gt']
            x_img = data['x_img']
            x_img_gt = data['x_img_gt']

            depth = torch.norm(x_cam_gt.mean(2),dim=1)
            all_depth.append(depth.numpy())
            all_f.append(fgt.numpy()[0])

            ptsI = x_img.reshape((M,N,2)).permute(0,2,1)
            x_img_pts = x_img.reshape((M,N,2)).permute(0,2,1)
            one = torch.ones(M*N,1)
            x_img_one = torch.cat([x_img,one],dim=1)
            x = x_img_one.permute(1,0)

            # run the model
            f = torch.sigmoid(calib_net)*2000
            shape = mu_lm
            ini_pose = torch.zeros((M,6))
            ini_pose[:,5] = 99
            curloss = 100

            # apply dual optimization
            shape,K,R,T = dualoptimization(x,ptsI,x2d,ini_pose,calib_net,sfm_net,shape_gt=shape_gt,fgt=fgt)
            f = K[0,0].detach()
            all_fpred.append(f.item())

            # get errors
            km,c_w,scaled_betas, alphas = util.EPnP(ptsI,shape,K)
            Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)

            # get errors
            reproj_errors2 = util.getReprojError2(ptsI,shape,R,T,K)
            reproj_errors3 = torch.norm(shape_gt - shape,dim=1).mean()
            rel_errors =  util.getRelReprojError3(x_cam_gt,shape,R,T)

            reproj_error = reproj_errors2.mean()
            reconstruction_error = reproj_errors3.mean()
            rel_error = rel_errors.mean()
            f_error = torch.abs(fgt - f) / fgt

            # save final prediction
            f_pred.append(f.detach().cpu().item())
            shape_pred.append(shape.detach().cpu().numpy())

            allerror_3d.append(reproj_error.data.numpy())
            allerror_2d.append(reconstruction_error.data.numpy())
            allerror_rel3d.append(rel_error.data.numpy())

            error_2d.append(reproj_error.cpu().data.item())
            error_3d.append(reconstruction_error.cpu().data.item())
            error_rel3d.append(rel_error.cpu().data.item())
            error_relf.append(f_error.cpu().data.item())

            print(f"f/sequence: {f_test}/{j}  | f/fgt: {f.item():.3f}/{fgt.item():.3f} |  f_error_rel: {f_error.item():.4f}  | rmse: {reconstruction_error.item():.4f}  | rel rmse: {rel_error.item():.4f}    | 2d error: {reproj_error.item():.4f}")
            #end for

        avg_2d = np.mean(error_2d)
        avg_rel3d = np.mean(error_rel3d)
        avg_3d = np.mean(error_3d)
        avg_relf = np.mean(error_relf)

        seterror_2d.append(avg_2d)
        seterror_3d.append(avg_3d)
        seterror_rel3d.append(avg_rel3d)
        seterror_relf.append(avg_relf)
        out_f.append(np.stack(f_pred))
        out_shape.append(np.stack(shape_pred,axis=0))
        #end for

    all_f = np.stack(all_f).flatten()
    all_fpred = np.stack(all_fpred).flatten()
    all_d = np.stack(all_depth).flatten()
    allerror_2d = np.stack(allerror_2d).flatten()
    allerror_3d = np.stack(allerror_3d).flatten()
    allerror_rel3d = np.stack(allerror_rel3d).flatten()

    matdata = {}
    #matdata['shape'] = shape.detach().cpu().numpy()
    matdata['fvals'] = np.array(f_vals)
    matdata['all_f'] = np.array(all_f)
    matdata['all_fpred'] = np.array(all_fpred)
    matdata['all_d'] = np.array(all_depth)
    matdata['error_2d'] = allerror_2d
    matdata['error_3d'] = allerror_3d
    matdata['error_rel3d'] = allerror_rel3d
    matdata['seterror_2d'] = np.array(seterror_2d)
    matdata['seterror_3d'] = np.array(seterror_3d)
    matdata['seterror_rel3d'] = np.array(seterror_rel3d)
    matdata['seterror_relf'] = np.array(seterror_relf)
    matdata['shape'] = np.stack(out_shape)
    matdata['f'] = np.stack(out_f)
    scipy.io.savemat(outfile,matdata)

    print(f"MEAN seterror_2d: {np.mean(seterror_2d)}")
    print(f"MEAN seterror_3d: {np.mean(seterror_3d)}")
    print(f"MEAN seterror_rel3d: {np.mean(seterror_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(seterror_relf)}")
def test(modelin=args.model,outfile=args.out,feature_transform=args.feat_trans):

    # define model, dataloader, 3dmm eigenvectors, optimization method
    #if modelin != "":
    #    model.load_state_dict(torch.load(modelin))
    #model.eval()
    #model.cuda()

    # mean shape and eigenvectors for 3dmm
    M = 100
    N = 68
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float()
    mu_lm[:,2] = mu_lm[:,2]*-1
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float()
    #optimizer = torch.optim.Adam(model.parameters(),lr=1e-2)

    # sample from f testing set
    allerror_2d = []
    allerror_3d = []
    allerror_rel3d = []
    allerror_relf = []
    all_f = []
    all_depth = []

    seterror_3d = []
    seterror_rel3d = []
    seterror_relf = []
    seterror_2d = []
    f_vals = [400 + i*100 for i in range(4)]

    # set random seed for reproducibility of test set
    np.random.seed(0)
    for f_test in f_vals:
        f_test = 1400
        # create dataloader
        loader = dataloader.TestLoader(f_test)

        error_2d = []
        error_3d = []
        error_rel3d = []
        error_relf = []
        M = 100;
        N = 68;
        batch_size = 1;

        for j, data in enumerate(loader):
            # create a model and optimizer for it
            theta1 = (1.1*torch.randn(4)).requires_grad()
            optimizer = torch.optim.SGD({theta},lr=0.00001)

            model2 = Model1(k=199,feature_transform=False)
            model2.apply(util.init_weights)
            model = Model1(k=1, feature_transform=False)
            model.apply(util.init_weights)
            optimizer = torch.optim.Adam(list(model.parameters()) + list(model2.parameters()),lr=1)

            # load the data
            x_cam_gt = data['x_cam_gt']
            shape_gt = data['x_w_gt']
            fgt = data['f_gt']
            x_img = data['x_img']
            x_img_gt = data['x_img_gt']
            T_gt = data['T_gt']
            all_depth.append(np.mean(T_gt[:,2]))
            all_f.append(fgt.numpy()[0])

            ptsI = x_img.reshape((M,N,2)).permute(0,2,1)
            x2d = x_img.view((M,N,2))
            x_img_pts = x_img.reshape((M,N,2)).permute(0,2,1)
            one = torch.ones(M*N,1)
            x_img_one = torch.cat([x_img,one],dim=1)
            x = x_img_one.permute(1,0)

            ini_pose = torch.zeros((M,6))
            ini_pose[:,5] = 99
            pre_loss = 99
            for iter in itertools.count():
                optimizer.zero_grad()

                # shape prediction
                betas,_,_ = model2(x.unsqueeze(0))
                shape = torch.sum(betas * lm_eigenvec,1)
                shape = shape.reshape(68,3) + mu_lm
                #shape = shape_gt

                # RMSE between GT and predicted shape
                rmse = torch.norm(shape_gt - shape,dim=1).mean().detach()

                # focal length prediction
                f,_,_ = model(x.unsqueeze(0))
                f = f + 300
                K = torch.zeros((3,3)).float()
                K[0,0] = f
                K[1,1] = f
                K[2,2] = 1

                # differentiable PnP pose estimation
                pose = bpnp(x2d,shape,K,ini_pose)
                pred = BPnP.batch_project(pose,shape,K)

                # loss
                #loss = torch.mean(torch.abs(pred - x2d))
                loss = torch.mean(torch.norm(pred - x2d,dim=2))

                loss.backward()
                optimizer.step()
                print(f"iter: {iter} | error: {loss.item():.3f} | f/fgt: {f.item():.1f}/{fgt[0].item():.1f} | rmse: {rmse.item():.2f}")
                if iter == 200: break
                ini_pose = pose.detach()

            # get errors
            km,c_w,scaled_betas, alphas = util.EPnP(ptsI,shape,K)
            Xc, R, T, mask = util.optimizeGN(km,c_w,scaled_betas,alphas,shape,ptsI,K)

            # get errors
            reproj_errors2 = util.getReprojError2(ptsI,shape,R,T,K)
            reproj_errors3 = util.getReprojError3(x_cam_gt,shape,R,T)
            rel_errors =  util.getRelReprojError3(x_cam_gt,shape,R,T)

            reproj_error = reproj_errors2.mean()
            reconstruction_error = reproj_errors3.mean()
            rel_error = rel_errors.mean()
            f_error = torch.abs(fgt - f) / fgt

            allerror_3d.append(reproj_error.data.numpy())
            allerror_2d.append(reconstruction_error.data.numpy())
            allerror_rel3d.append(rel_error.data.numpy())

            error_2d.append(reproj_error.cpu().data.item())
            error_3d.append(reconstruction_error.cpu().data.item())
            error_rel3d.append(rel_error.cpu().data.item())
            error_relf.append(f_error.cpu().data.item())

            print(f"f/sequence: {f_test}/{j}  | f/fgt: {f[0].item():.3f}/{fgt.item():.3f} |  f_error_rel: {f_error.item():.4f}  | rmse: {reconstruction_error.item():.4f}  | rel rmse: {rel_error.item():.4f}    | 2d error: {reproj_error.item():.4f}")
            #end for

        avg_2d = np.mean(error_2d)
        avg_rel3d = np.mean(error_rel3d)
        avg_3d = np.mean(error_3d)
        avg_relf = np.mean(error_relf)

        seterror_2d.append(avg_2d)
        seterror_3d.append(avg_3d)
        seterror_rel3d.append(avg_rel3d)
        seterror_relf.append(avg_relf)
        #end for
        break

    all_f = np.stack(all_f).flatten()
    all_d = np.stack(all_depth).flatten()
    allerror_2d = np.stack(allerror_2d).flatten()
    allerror_3d = np.stack(allerror_3d).flatten()
    allerror_rel3d = np.stack(allerror_rel3d).flatten()

    matdata = {}
    matdata['fvals'] = np.array(f_vals)
    matdata['all_f'] = np.array(all_f)
    matdata['all_d'] = np.array(all_depth)
    matdata['error_2d'] = allerror_2d
    matdata['error_3d'] = allerror_3d
    matdata['error_rel3d'] = allerror_rel3d
    matdata['seterror_2d'] = np.array(seterror_2d)
    matdata['seterror_3d'] = np.array(seterror_3d)
    matdata['seterror_rel3d'] = np.array(seterror_rel3d)
    matdata['seterror_relf'] = np.array(seterror_relf)
    scipy.io.savemat(outfile,matdata)

    print(f"MEAN seterror_2d: {np.mean(seterror_2d)}")
    print(f"MEAN seterror_3d: {np.mean(seterror_3d)}")
    print(f"MEAN seterror_rel3d: {np.mean(seterror_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(seterror_relf)}")
def test(modelin=args.model,
         outfile=args.out,
         feature_transform=args.feat_trans):

    # define model, dataloader, 3dmm eigenvectors, optimization method
    #if modelin != "":
    #    model.load_state_dict(torch.load(modelin))
    #model.eval()
    #model.cuda()

    # mean shape and eigenvectors for 3dmm
    M = 100
    N = 68
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float()
    mu_lm[:, 2] = mu_lm[:, 2] * -1
    shape = mu_lm.detach()
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float()
    #optimizer = torch.optim.Adam(model.parameters(),lr=1e-2)

    # sample from f testing set
    allerror_2d = []
    allerror_3d = []
    allerror_rel3d = []
    allerror_relf = []
    all_f = []
    all_depth = []

    seterror_3d = []
    seterror_rel3d = []
    seterror_relf = []
    seterror_2d = []
    f_vals = [i * 100 for i in range(4, 21)]
    for f_test in f_vals:
        f_test = 1400
        # create dataloader
        loader = dataloader.TestLoader(f_test)

        error_2d = []
        error_3d = []
        error_rel3d = []
        error_relf = []
        M = 100
        N = 68
        batch_size = 1

        for j, data in enumerate(loader):
            # create a model and optimizer for it
            model = Model2(k=1, feature_transform=False)
            model.apply(util.init_weights)
            optimizer = torch.optim.Adam(model.parameters(), lr=1e-1)

            M = loader.M
            N = loader.N

            # load the data
            T_gt = data['T_gt']
            x_cam_gt = data['x_cam_gt']
            x_w_gt = data['x_w_gt']
            fgt = data['f_gt']
            x_img = data['x_img']
            x_img_gt = data['x_img_gt']

            x_img_pts = x_img.reshape((M, N, 2)).permute(0, 2, 1)
            one = torch.ones(M * N, 1)
            x_img_one = torch.cat([x_img, one], dim=1)
            x_cam_pt = x_cam_gt.permute(0, 2, 1).reshape(M * N, 3)

            all_depth.append(np.mean(T_gt[:, 2]))
            all_f.append(fgt.numpy()[0])

            # create the input
            b = 10
            x = x_img_one.reshape(M, N,
                                  3).reshape(b, M // b, N,
                                             3).reshape(b, M // b * N, 3)
            x = x.permute(0, 2, 1)
            ptsI = x_img.reshape((M, N, 2)).permute(0, 2, 1)

            # optimize using EPNP+GN
            fvals = []
            errors = []
            for iter in itertools.count():
                optimizer.zero_grad()

                f, _, _ = model(x)
                #f = f + 1000
                f = torch.nn.functional.leaky_relu(f) + 300
                K = torch.zeros((b, 3, 3)).float()
                K[:, 0, 0] = f.squeeze()
                K[:, 1, 1] = f.squeeze()
                K[:, 2, 2] = 1

                # differentiable pose estimation
                losses = []
                for i in range(b):
                    j = i + 1
                    km, c_w, scaled_betas, alphas = util.EPnP(
                        ptsI[i:j * b], shape, K[i])
                    Xc, R, T, _ = util.optimizeGN(km, c_w, scaled_betas,
                                                  alphas, shape, ptsI[i:j * b],
                                                  K[i])
                    error2d = util.getReprojError2(ptsI[i:j * b], shape, R, T,
                                                   K[i]).mean()
                    losses.append(error2d)
                loss = torch.stack(losses).mean()
                loss.backward()
                optimizer.step()
                print(
                    f"iter: {iter} | error: {loss.item():.3f} | f/fgt: {f.mean().item():.1f}/{fgt[0].item():.1f}"
                )
                if iter == 100: break

            # get overall poses
            f = f.mean()
            K = torch.zeros((3, 3)).float()
            K[0, 0] = f
            K[1, 1] = f
            K[2, 2] = 1
            km, c_w, scaled_betas, alphas = util.EPnP(ptsI, shape, K)
            Xc, R, T, _ = util.optimizeGN(km, c_w, scaled_betas, alphas, shape,
                                          ptsI, K)

            # get errors
            reproj_errors2 = util.getReprojError2(ptsI, shape, R, T, K)
            reproj_errors3 = util.getReprojError3(x_cam_gt, shape, R, T)
            rel_errors = util.getRelReprojError3(x_cam_gt, shape, R, T)

            reproj_error = reproj_errors2.mean()
            reconstruction_error = reproj_errors3.mean()
            rel_error = rel_errors.mean()
            f_error = torch.abs(fgt - f) / fgt

            allerror_3d.append(reproj_error.data.numpy())
            allerror_2d.append(reconstruction_error.data.numpy())
            allerror_rel3d.append(rel_error.data.numpy())

            error_2d.append(reproj_error.cpu().data.item())
            error_3d.append(reconstruction_error.cpu().data.item())
            error_rel3d.append(rel_error.cpu().data.item())
            error_relf.append(f_error.cpu().data.item())

            print(
                f"f/sequence: {f_test}/{j}  | f/fgt: {f.item():.3f}/{fgt.item():.3f} |  f_error_rel: {f_error.item():.4f}  | rmse: {reconstruction_error.item():.4f}  | rel rmse: {rel_error.item():.4f}    | 2d error: {reproj_error.item():.4f}"
            )
            #end for

        avg_2d = np.mean(error_2d)
        avg_rel3d = np.mean(error_rel3d)
        avg_3d = np.mean(error_3d)
        avg_relf = np.mean(error_relf)

        seterror_2d.append(avg_2d)
        seterror_3d.append(avg_3d)
        seterror_rel3d.append(avg_rel3d)
        seterror_relf.append(avg_relf)
        #end for
        break

    all_f = np.stack(all_f).flatten()
    all_d = np.stack(all_depth).flatten()
    allerror_2d = np.stack(allerror_2d).flatten()
    allerror_3d = np.stack(allerror_3d).flatten()
    allerror_rel3d = np.stack(allerror_rel3d).flatten()

    matdata = {}
    matdata['fvals'] = np.array(f_vals)
    matdata['all_f'] = np.array(all_f)
    matdata['all_d'] = np.array(all_depth)
    matdata['error_2d'] = allerror_2d
    matdata['error_3d'] = allerror_3d
    matdata['error_rel3d'] = allerror_rel3d
    matdata['seterror_2d'] = np.array(seterror_2d)
    matdata['seterror_3d'] = np.array(seterror_3d)
    matdata['seterror_rel3d'] = np.array(seterror_rel3d)
    matdata['seterror_relf'] = np.array(seterror_relf)
    scipy.io.savemat(outfile, matdata)

    print(f"MEAN seterror_2d: {np.mean(seterror_2d)}")
    print(f"MEAN seterror_3d: {np.mean(seterror_3d)}")
    print(f"MEAN seterror_rel3d: {np.mean(seterror_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(seterror_relf)}")
示例#12
0
def test(modelin=args.model,
         outfile=args.out,
         feature_transform=args.feat_trans):

    # define model, dataloader, 3dmm eigenvectors, optimization method
    #if modelin != "":
    #    model.load_state_dict(torch.load(modelin))
    #model.eval()
    #model.cuda()

    # mean shape and eigenvectors for 3dmm
    M = 100
    N = 68
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float()
    mu_lm[:, 2] = mu_lm[:, 2] * -1
    shape = mu_lm.detach()
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float()
    #optimizer = torch.optim.Adam(model.parameters(),lr=1e-2)

    # sample from f testing set
    allerror_2d = []
    allerror_3d = []
    allerror_rel3d = []
    allerror_relf = []
    all_f = []
    all_depth = []

    seterror_3d = []
    seterror_rel3d = []
    seterror_relf = []
    seterror_2d = []
    f_vals = [i * 100 for i in range(4, 21)]
    np.random.seed(0)
    for f_test in f_vals:
        f_test = 1200
        # create dataloader
        loader = dataloader.TestLoader(f_test)

        error_2d = []
        error_3d = []
        error_rel3d = []
        error_relf = []
        M = 100
        N = 68
        batch_size = 1

        for j, data in enumerate(loader):
            # create a model and optimizer for it
            #model2 = Model1(k=199,feature_transform=False)
            #model2.apply(util.init_weights)
            model = Model1(k=1, feature_transform=False)
            model.apply(util.init_weights)
            optimizer = torch.optim.Adam(model.parameters(), lr=2e-1)

            #data = loader[67]
            x_cam_gt = data['x_cam_gt']
            shape = data['x_w_gt']
            fgt = data['f_gt']
            x_img = data['x_img']
            x_img_gt = data['x_img_gt']
            T_gt = data['T_gt']
            all_depth.append(np.mean(T_gt[:, 2]))
            all_f.append(fgt.numpy()[0])

            x_img_pts = x_img.reshape((M, N, 2)).permute(0, 2, 1)
            one = torch.ones(M * N, 1)
            x_img_one = torch.cat([x_img, one], dim=1)
            x_cam_pt = x_cam_gt.permute(0, 2, 1).reshape(M * N, 3)
            x = x_img_one.permute(1, 0)

            ptsI = x_img.reshape((M, N, 2)).permute(0, 2, 1)

            for iter in itertools.count():
                optimizer.zero_grad()

                #betas,_,_ = model2(x.unsqueeze(0))
                #shape = torch.sum(betas * lm_eigenvec,1)
                #shape = shape.reshape(68,3) + mu_lm

                f, _, _ = model(x.unsqueeze(0))
                #f = f + 300
                #f = (torch.nn.functional.tanh(f)+1)*850 + 300
                f = f + 300
                #f = torch.nn.functional.sigmoid(f)
                K = torch.zeros((3, 3)).float()
                K[0, 0] = f
                K[1, 1] = f
                K[2, 2] = 1

                # differentiable pose estimation
                km, c_w, scaled_betas, alphas = util.EPnP(ptsI, shape, K)
                Xc, R, T, mask = util.optimizeGN(km, c_w, scaled_betas, alphas,
                                                 shape, ptsI, K)
                error2d = util.getReprojError2(ptsI,
                                               shape,
                                               R,
                                               T,
                                               K,
                                               show=False,
                                               loss='l1')
                loss = error2d.mean()
                loss.backward()
                if torch.any(model.fc2.weight.grad != model.fc2.weight.grad):
                    print("oh oh something broke")
                    break
                optimizer.step()
                print(
                    f"iter: {iter} | error: {loss.item():.3f} | f/fgt: {f.item():.1f}/{fgt[0].item():.1f}"
                )
                if iter == 200: break

            # get errors
            reproj_errors2 = util.getReprojError2(ptsI, shape, R, T, K)
            reproj_errors3 = util.getReprojError3(x_cam_gt, shape, R, T)
            rel_errors = util.getRelReprojError3(x_cam_gt, shape, R, T)

            reproj_error = reproj_errors2.mean()
            reconstruction_error = reproj_errors3.mean()
            rel_error = rel_errors.mean()
            f_error = torch.abs(fgt - f) / fgt

            allerror_3d.append(reproj_error.data.numpy())
            allerror_2d.append(reconstruction_error.data.numpy())
            allerror_rel3d.append(rel_error.data.numpy())

            error_2d.append(reproj_error.cpu().data.item())
            error_3d.append(reconstruction_error.cpu().data.item())
            error_rel3d.append(rel_error.cpu().data.item())
            error_relf.append(f_error.cpu().data.item())

            print(
                f"f/sequence: {f_test}/{j}  | f/fgt: {f[0].item():.3f}/{fgt.item():.3f} |  f_error_rel: {f_error.item():.4f}  | rmse: {reconstruction_error.item():.4f}  | rel rmse: {rel_error.item():.4f}    | 2d error: {reproj_error.item():.4f}"
            )
            #end for

        avg_2d = np.mean(error_2d)
        avg_rel3d = np.mean(error_rel3d)
        avg_3d = np.mean(error_3d)
        avg_relf = np.mean(error_relf)

        seterror_2d.append(avg_2d)
        seterror_3d.append(avg_3d)
        seterror_rel3d.append(avg_rel3d)
        seterror_relf.append(avg_relf)
        #end for
        break

    all_f = np.stack(all_f).flatten()
    all_d = np.stack(all_depth).flatten()
    allerror_2d = np.stack(allerror_2d).flatten()
    allerror_3d = np.stack(allerror_3d).flatten()
    allerror_rel3d = np.stack(allerror_rel3d).flatten()

    matdata = {}
    matdata['fvals'] = np.array(f_vals)
    matdata['all_f'] = np.array(all_f)
    matdata['all_d'] = np.array(all_depth)
    matdata['error_2d'] = allerror_2d
    matdata['error_3d'] = allerror_3d
    matdata['error_rel3d'] = allerror_rel3d
    matdata['seterror_2d'] = np.array(seterror_2d)
    matdata['seterror_3d'] = np.array(seterror_3d)
    matdata['seterror_rel3d'] = np.array(seterror_rel3d)
    matdata['seterror_relf'] = np.array(seterror_relf)
    scipy.io.savemat(outfile, matdata)

    print(f"MEAN seterror_2d: {np.mean(seterror_2d)}")
    print(f"MEAN seterror_3d: {np.mean(seterror_3d)}")
    print(f"MEAN seterror_rel3d: {np.mean(seterror_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(seterror_relf)}")
示例#13
0
def test(model, modelin=args.model,outfile=args.out,feature_transform=args.feat_trans):

    # define model, dataloader, 3dmm eigenvectors, optimization method
    if modelin != "":
        model.load_state_dict(torch.load(modelin))
    model.cuda()

    # mean shape and eigenvectors for 3dmm
    M = 100
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float().cuda()
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float().cuda()

    # sample from f testing set
    allerror_2d = []
    allerror_3d = []
    allerror_rel3d = []
    allerror_relf = []
    allerror_f = []
    allerror_d = []

    seterror_3d = []
    seterror_rel3d = []
    seterror_relf = []
    seterror_2d = []
    f_vals = [i*100 for i in range(4,21)]
    for f_test in f_vals:
        # create dataloader
        data = dataloader.TestLoader(f_test)

        error_2d = []
        error_3d = []
        error_rel3d = []
        error_relf = []

        for k in range(len(data)):
            batch = data[k]
            x_cam_gt = batch['x_cam_gt'].cuda()
            x_w_gt = batch['x_w_gt'].cuda()
            f_gt = batch['f_gt'].cuda()
            x_img = batch['x_img'].cuda()
            x_img_gt = batch['x_img_gt'].cuda()
            T_gt = batch['T_gt']

            allerror_d.append(T_gt[:,2])

            one  = torch.ones(M,1,68).cuda()
            x_img_one = torch.cat([x_img,one],dim=1)

            # run the model
            out, trans, transfeat = model(x_img_one)
            alphas = out[:,:199].mean(0)
            f = torch.relu(out[:,199]).mean()
            K = torch.zeros((3,3)).float().cuda()

            for f = np.linspace(-200,200,100):
                K[0,0] = f;
                K[1,1] = f;
                K[2,2] = 1;
                K[0,2] = 320;
                K[1,2] = 240;

                # apply 3DMM model from predicted parameters
                alpha_matrix = torch.diag(alphas)
                shape_cov = torch.mm(lm_eigenvec,alpha_matrix)
                s = shape_cov.sum(1).view(68,3)
                #shape = (mu_lm + s)
                shape = mu_lm
                shape[:,2] = shape[:,2]*-1

                # run epnp algorithm
                # get control points
                c_w = util.getControlPoints(shape)

                # solve alphas
                alphas = util.solveAlphas(shape,c_w)

                # setup M
                px = 320;
                py = 240;
                Matrix = util.setupM(alphas,x_img.permute(0,2,1),px,py,f)

                # get eigenvectors of M for each view
                u,d,v = torch.svd(Matrix)

                #solve N=1
                c_c_n1 = v[:,:,-1].reshape((100,4,3)).permute(0,2,1)
                _ , x_c_n1, _ = util.scaleControlPoints(c_c_n1,c_w[:3,:],alphas,shape)
                Rn1,Tn1 = util.getExtrinsics(x_c_n1,shape)
                reproj_error2_n1 = util.getReprojError2(x_img,shape,Rn1,Tn1,K)
                reproj_error3_n1 = util.getReprojError3(x_cam_gt,shape,Rn1,Tn1)
                rel_error_n1 = util.getRelReprojError3(x_cam_gt,shape,Rn1,Tn1)

                # solve N=2
                # get distance contraints
                d12,d13,d14,d23,d24,d34 = util.getDistances(c_w)
                distances = torch.stack([d12,d13,d14,d23,d24,d34])**2
                beta_n2 = util.getBetaN2(v[:,:,-2:],distances)
                c_c_n2 = util.getControlPointsN2(v[:,:,-2:],beta_n2)
                _,x_c_n2,_ = util.scaleControlPoints(c_c_n2,c_w[:3,:],alphas,shape)
                Rn2,Tn2 = util.getExtrinsics(x_c_n2,shape)
                reproj_error2_n2 = util.getReprojError2(x_img,shape,Rn2,Tn2,K)
                reproj_error3_n2 = util.getReprojError3(x_cam_gt,shape,Rn2,Tn2)
                rel_error_n2 = util.getRelReprojError3(x_cam_gt,shape,Rn1,Tn1)

                mask = reproj_error2_n1 < reproj_error2_n2
                reproj_errors = torch.cat((reproj_error2_n1[mask],reproj_error2_n2[~mask]))
                rmse_errors = torch.cat((reproj_error3_n1[mask],reproj_error3_n2[~mask]))
                rel_errors = torch.cat((rel_error_n2[~mask],rel_error_n1[mask]))

                print(rel_errors.mean())
                quit()

            # errors
            allerror_3d.append(reproj_errors.cpu().data.numpy())
            allerror_2d.append(rmse_errors.cpu().data.numpy())
            allerror_rel3d.append(rel_errors.cpu().data.numpy())

            reproj_error = torch.mean(reproj_errors)
            reconstruction_error = torch.mean(rmse_errors)
            rel_error = torch.mean(rel_errors)
            f_error = torch.abs(f_gt - f) / f_gt

            error_2d.append(reproj_error.cpu().data.item())
            error_3d.append(reconstruction_error.cpu().data.item())
            error_rel3d.append(rel_error.cpu().data.item())
            error_relf.append(f_error.cpu().data.item())

            print(f"f/sequence: {f_test}/{k}  | f_error_rel: {f_error.item():.4f}  | rmse: {reconstruction_error.item():.4f}  | rel rmse: {rel_error.item():.4f}    | 2d error: {reproj_error.item():.4f}")

            #end for

        avg_2d = np.mean(error_2d)
        avg_rel3d = np.mean(error_rel3d)
        avg_3d = np.mean(error_3d)
        avg_relf = np.mean(error_relf)

        seterror_2d.append(avg_2d)
        seterror_3d.append(avg_3d)
        seterror_rel3d.append(avg_rel3d)
        seterror_relf.append(avg_relf)
示例#14
0
def test(modelin=args.model,
         outfile=args.out,
         feature_transform=args.feat_trans):

    # define model, dataloader, 3dmm eigenvectors, optimization method
    #if modelin != "":
    #    model.load_state_dict(torch.load(modelin))
    #model.eval()
    #model.cuda()

    # mean shape and eigenvectors for 3dmm
    M = 100
    N = 68
    data3dmm = dataloader.SyntheticLoader()
    mu_lm = torch.from_numpy(data3dmm.mu_lm).float().detach()
    mu_lm[:, 2] = mu_lm[:, 2] * -1
    lm_eigenvec = torch.from_numpy(data3dmm.lm_eigenvec).float()
    #optimizer = torch.optim.Adam(model.parameters(),lr=1e-2)

    # sample from f testing set
    allerror_2d = []
    allerror_3d = []
    allerror_rel3d = []
    allerror_relf = []
    all_f = []
    all_depth = []

    seterror_3d = []
    seterror_rel3d = []
    seterror_relf = []
    seterror_2d = []
    f_vals = [400 + i * 100 for i in range(4)]

    # set random seed for reproducibility of test set
    np.random.seed(0)
    torch.manual_seed(0)
    for f_test in f_vals:
        f_test = 1400
        # create dataloader
        loader = dataloader.TestLoader(f_test)

        error_2d = []
        error_3d = []
        error_rel3d = []
        error_relf = []
        M = 100
        N = 68
        batch_size = 1

        for j, data in enumerate(loader):
            # create a model and optimizer for it
            model2 = Model1(k=199, feature_transform=False)
            model2.apply(util.init_weights)
            model = Model1(k=1, feature_transform=False)
            model.apply(util.init_weights)
            opt1 = torch.optim.Adam(model2.parameters(), lr=1e-1)
            opt2 = torch.optim.Adam(model.parameters(), lr=1e-1)

            # load the data
            x_cam_gt = data['x_cam_gt']
            shape_gt = data['x_w_gt']
            fgt = data['f_gt']
            x_img = data['x_img']
            x_img_gt = data['x_img_gt']
            T_gt = data['T_gt']
            all_depth.append(np.mean(T_gt[:, 2]))
            all_f.append(fgt.numpy()[0])

            x_img_pts = x_img.reshape((M, N, 2)).permute(0, 2, 1)
            one = torch.ones(M * N, 1)
            x_img_one = torch.cat([x_img, one], dim=1)
            x_cam_pt = x_cam_gt.permute(0, 2, 1).reshape(M * N, 3)
            x = x_img_one.permute(1, 0)

            ptsI = x_img.reshape((M, N, 2)).permute(0, 2, 1)

            # multi objective optimization
            shape = mu_lm
            for outerloop in itertools.count():

                # calibration alg3
                shape = shape.detach()
                for iter2 in itertools.count():
                    opt2.zero_grad()

                    # focal length prediction
                    curf, _, _ = model(x.unsqueeze(0))
                    curf = curf + 300
                    K = torch.zeros((3, 3)).float()
                    K[0, 0] = curf
                    K[1, 1] = curf
                    K[2, 2] = 1

                    # RMSE between GT and predicted shape
                    rmse = torch.norm(shape_gt - shape, dim=1).mean().detach()

                    # differentiable PnP pose estimation
                    km, c_w, scaled_betas, alphas = util.EPnP(ptsI, shape, K)
                    Xc, R, T, mask = util.optimizeGN(km, c_w, scaled_betas,
                                                     alphas, shape, ptsI, K)
                    error2d = util.getReprojError2(ptsI,
                                                   shape,
                                                   R,
                                                   T,
                                                   K,
                                                   show=False,
                                                   loss='l2')
                    loss = error2d.mean()
                    if iter2 > 20 and prev_loss < loss:
                        break
                    else:
                        prev_loss = loss
                    loss.backward()
                    opt2.step()
                    print(
                        f"iter: {iter2} | error: {loss.item():.3f} | f/fgt: {curf.item():.1f}/{fgt[0].item():.1f} | rmse: {rmse.item():.2f}"
                    )

                # sfm alg2
                curf = curf.detach()
                for iter1 in itertools.count():
                    opt1.zero_grad()

                    # shape prediction
                    betas, _, _ = model2(x.unsqueeze(0))
                    shape = torch.sum(betas * lm_eigenvec, 1)
                    shape = shape.reshape(68, 3) + mu_lm
                    K = torch.zeros((3, 3)).float()
                    K[0, 0] = curf
                    K[1, 1] = curf
                    K[2, 2] = 1

                    # RMSE between GT and predicted shape
                    rmse = torch.norm(shape_gt - shape, dim=1).mean().detach()

                    # differentiable PnP pose estimation
                    km, c_w, scaled_betas, alphas = util.EPnP(ptsI, shape, K)
                    Xc, R, T, mask = util.optimizeGN(km, c_w, scaled_betas,
                                                     alphas, shape, ptsI, K)
                    error2d = util.getReprojError2(ptsI,
                                                   shape,
                                                   R,
                                                   T,
                                                   K,
                                                   show=False,
                                                   loss='l2')
                    loss = error2d.mean()
                    if iter1 > 20 and prev_loss < loss:
                        break
                    else:
                        prev_loss = loss
                    loss.backward()
                    opt1.step()
                    print(
                        f"iter: {iter1} | error: {loss.item():.3f} | f/fgt: {curf.item():.1f}/{fgt[0].item():.1f} | rmse: {rmse.item():.2f}"
                    )

                # closing condition for outerloop on dual objective
                if outerloop == 4: break

            f = curf
            # get errors
            reproj_errors2 = util.getReprojError2(ptsI, shape, R, T, K)
            reproj_errors3 = util.getReprojError3(x_cam_gt, shape, R, T)
            rel_errors = util.getRelReprojError3(x_cam_gt, shape, R, T)

            reproj_error = reproj_errors2.mean()
            reconstruction_error = reproj_errors3.mean()
            rel_error = rel_errors.mean()
            f_error = torch.abs(fgt - f) / fgt

            allerror_3d.append(reproj_error.data.numpy())
            allerror_2d.append(reconstruction_error.data.numpy())
            allerror_rel3d.append(rel_error.data.numpy())

            error_2d.append(reproj_error.cpu().data.item())
            error_3d.append(reconstruction_error.cpu().data.item())
            error_rel3d.append(rel_error.cpu().data.item())
            error_relf.append(f_error.cpu().data.item())

            print(
                f"f/sequence: {f_test}/{j}  | f/fgt: {f[0].item():.3f}/{fgt.item():.3f} |  f_error_rel: {f_error.item():.4f}  | rmse: {reconstruction_error.item():.4f}  | rel rmse: {rel_error.item():.4f}    | 2d error: {reproj_error.item():.4f}"
            )
            #end for

        avg_2d = np.mean(error_2d)
        avg_rel3d = np.mean(error_rel3d)
        avg_3d = np.mean(error_3d)
        avg_relf = np.mean(error_relf)

        seterror_2d.append(avg_2d)
        seterror_3d.append(avg_3d)
        seterror_rel3d.append(avg_rel3d)
        seterror_relf.append(avg_relf)
        #end for
        break

    all_f = np.stack(all_f).flatten()
    all_d = np.stack(all_depth).flatten()
    allerror_2d = np.stack(allerror_2d).flatten()
    allerror_3d = np.stack(allerror_3d).flatten()
    allerror_rel3d = np.stack(allerror_rel3d).flatten()

    matdata = {}
    matdata['fvals'] = np.array(f_vals)
    matdata['all_f'] = np.array(all_f)
    matdata['all_d'] = np.array(all_depth)
    matdata['error_2d'] = allerror_2d
    matdata['error_3d'] = allerror_3d
    matdata['error_rel3d'] = allerror_rel3d
    matdata['seterror_2d'] = np.array(seterror_2d)
    matdata['seterror_3d'] = np.array(seterror_3d)
    matdata['seterror_rel3d'] = np.array(seterror_rel3d)
    matdata['seterror_relf'] = np.array(seterror_relf)
    scipy.io.savemat(outfile, matdata)

    print(f"MEAN seterror_2d: {np.mean(seterror_2d)}")
    print(f"MEAN seterror_3d: {np.mean(seterror_3d)}")
    print(f"MEAN seterror_rel3d: {np.mean(seterror_rel3d)}")
    print(f"MEAN seterror_relf: {np.mean(seterror_relf)}")