def valid_on_epoch(self, epoch, filename, memory): self.logger.info("Epoch {:02} {} begins validing ...................".format(epoch, self.tag)) self.model.eval() start_time = time.time() score = Fscore(self.tag) datas = ActDataset.read_file(filename, memory) for pair in datas: cnet = pair['cnet'] class_string = pair['label'] gold_classes = ActDataset.class_info(class_string) pred_classes = decode_act(self.model, cnet, memory, self.cuda) score.update_tp_fp_fn(pred_classes, gold_classes) fscore = score.output_fscore(self.logger, epoch) elapsed_time = time.time() - start_time self.logger.info("Epoch {:02} {} end validing elapsed_time: {:6.0f}s".format( epoch, self.tag, elapsed_time) ) self.logger.info('*****************************************************') return fscore
def error(opt): opt.experiment = os.path.join(root_dir, opt.experiment) opt.load_chkpt = os.path.join(opt.experiment, opt.save_model) opt.test_file = os.path.join(opt.data_root, opt.test_file) opt.save_file = os.path.join(opt.experiment, 'error.json') # Model loading model = make_model(opt) chkpt = torch.load(opt.load_chkpt, map_location=lambda storage, log: storage) model.load_state_dict(chkpt) if opt.deviceid >= 0: model = model.cuda() print(model) # ====== *********************** ================ model.eval() # =============================================== # decode print('Decoding ...') if opt.task == 'act': datas = ActDataset.read_file(opt.test_file, opt.memory) elif opt.task == 'slot': datas = SlotDataset.read_file(opt.test_file, opt.memory) elif opt.task == 'value': datas = ValueDataset.read_file(opt.test_file, opt.memory) elif opt.task == 'slu': datas = SLUDataset.read_file(opt.test_file, opt.memory) dic = {'pairs': []} for pair in datas: cnet = pair['cnet'] class_string = pair['label'] if opt.task == 'act': gold_classes = ActDataset.class_info(class_string) pred_classes = decode_act(model, cnet, opt.memory, opt.cuda) elif opt.task == 'slot': gold_classes = SlotDataset.class_info(class_string) pred_classes = decode_slot(model, cnet, class_string, opt.memory, opt.cuda) elif opt.task == 'value': gold_classes = ValueDataset.class_info(class_string) pred_classes = decode_value(model, cnet, class_string, opt.memory, opt.cuda) elif opt.task == 'slu': gold_classes = SLUDataset.class_info(class_string) pred_classes = decode_slu(model, cnet, opt.memory, opt.cuda) gold_class = ';'.join(sorted(gold_classes)) pred_class = ';'.join(sorted(pred_classes)) if gold_class != pred_class: pr = {'cnet': cnet, 'label': gold_class, 'pred': pred_class} dic['pairs'].append(pr) string = json.dumps(dic, sort_keys=True, indent=4, separators=(',', ';')) with open(opt.save_file, 'w') as f: f.write(string) print('Decode results saved in {}'.format(opt.save_file))
def error(opt): opt.experiment = os.path.join(root_dir, opt.experiment) opt.load_chkpt = os.path.join(opt.experiment, opt.save_model) opt.test_file = os.path.join(opt.data_root, opt.test_file) opt.save_file = os.path.join(opt.experiment, 'error.info') # Model loading model = make_model(opt) chkpt = torch.load(opt.load_chkpt, map_location=lambda storage, log: storage) model.load_state_dict(chkpt) if opt.deviceid >= 0: model = model.cuda() print(model) # ====== *********************** ================ model.eval() # =============================================== # decode print('Decoding ...') g = open(opt.save_file, 'w') if opt.task == 'act': lines = ActDataset.read_file(opt.test_file) elif opt.task == 'slot': lines = SlotDataset.read_file(opt.test_file) elif opt.task == 'value': lines = ValueDataset.read_file(opt.test_file) elif opt.task == 'slu': lines = SLUDataset.read_file(opt.test_file) for (utterance, class_string) in lines: if opt.task == 'act': gold_classes = ActDataset.class_info(class_string) pred_classes = decode_act(model, utterance, opt.memory, opt.cuda) elif opt.task == 'slot': gold_classes = SlotDataset.class_info(class_string) pred_classes = decode_slot(model, utterance, class_string, opt.memory, opt.cuda) elif opt.task == 'value': gold_classes = ValueDataset.class_info(class_string) pred_classes = decode_value(model, utterance, class_string, opt.memory, opt.cuda) elif opt.task == 'slu': gold_classes = SLUDataset.class_info(class_string) pred_classes = decode_slu(model, utterance, opt.memory, opt.cuda) gold_class = ';'.join(sorted(gold_classes)) pred_class = ';'.join(sorted(pred_classes)) if gold_class != pred_class: g.write('{}\t<=>\t{}\t<=>\t{}\n'.format(utterance, gold_class, pred_class)) g.close() print('Decode results saved in {}'.format(opt.save_file))