def transform_ts(self, sample): composed_transforms = transforms.Compose([ # tr.FixedResize(size=self.args.crop_size), tr.Normalize(mean=(0.279, 0.293, 0.290), std=(0.197, 0.198, 0.201)), tr.ToTensor() ]) return composed_transforms(sample)
def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(crop_size=self.args.crop_size), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) return composed_transforms(sample)
def transform_ts(self, sample): composed_transforms = transforms.Compose([ tr.FixedResize(size=self.crop_size), tr.Normalize(mean=(0.3416, 0.3416, 0.3416), std=(0.1889, 0.1889, 0.1889)), tr.ToTensor() ]) return composed_transforms(sample)
def transform_tr(self, sample: dict): sample_transforms = transforms.Compose([ ctr.RandomCrop(size=self.settings['rnd_crop_size']), ctr.RandomHorizontalFlip(p=0.5), ctr.ToTensor(), ctr.Normalize(**self.settings['normalize_params'], apply_to=['image']), ctr.Squeeze(apply_to=['label']), ]) return sample_transforms(sample)
def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), tr.RandomCrop(crop_size=(512, 512)), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) return composed_transforms(sample)
def transform_tr(self, sample): # composed_transforms = transforms.Compose([ # tr.RandomHorizontalFlip(), # tr.RandomScaleCrop(base_size=self.args.base_size, crop_size=self.args.crop_size), # tr.RandomGaussianBlur(), # tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), # tr.ToTensor()]) composed_transforms = transforms.Compose([tr.ToTensor()]) return composed_transforms(sample)
def transform_tr(self, sample): composed_transforms = transforms.Compose([ tr.FixedCrop(x1=280, x2=1000, y1=50, y2=562), tr.RandomHorizontalFlip(), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) return composed_transforms(sample)
def transform_tr(self, sample): composed_transforms = transforms.Compose([ # tr.RandomHorizontalFlip(), # tr.RandomScaleCrop(base_size=self.args.base_size, crop_size=self.args.crop_size, fill=255), tr.RandomGaussianBlur(), tr.Normalize(mean=(0.279, 0.293, 0.290), std=(0.197, 0.198, 0.201)), tr.ToTensor() ]) return composed_transforms(sample)
def transform(sample, cropsize=IMAGE_SIZE[1], offset=690):#####################此处更改IMAGE_SIZE选择 roi_image = sample['image'].crop((0,offset,3384,1710)) roi_label = sample['label'].crop((0,offset,3384,1710)) sample['image'] = roi_image.resize(cropsize, Image.BILINEAR) sample['label'] = roi_label.resize(cropsize, Image.NEAREST) composed_transform = transforms.Compose([ # tr.RandomHorizontalFlip(), # tr.RandomGaussianBlur(), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor()]) return composed_transform(sample)
def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(crop_size=self.crop_size), tr.Normalize(mean=[0.4911], std=[0.1658]), tr.ToTensor() ]) transformed = composed_transforms(sample) transformed['image'] = transformed['image'].unsqueeze(0) return transformed
def transform_tr(self, sample): composed_transforms = transforms.Compose([ FixedResize(resize=self.args.resize), RandomCrop(crop_size=self.args.crop_size), #tr.RandomGaussianBlur(), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) return composed_transforms(sample)
def transform_train(self, sample): composed_transforms = transforms.Compose([ #tr.RandomHorizontalFlip(), #tr.RandomRotate(10), #tr.RandomScaleCrop(base_size=self.args.base_size, crop_size=self.args.crop_size), #tr.RandomGaussianBlur(), tr.AddAxis(), tr.Normalize(), tr.ToTensor()]) return composed_transforms(sample)
def transform_ts(self, sample): """Image transformations for testing""" targs = self.transform method = targs["method"] pars = targs["parameters"] composed_transforms = transforms.Compose([ tr.FixedResize(size=pars["outSize"]), tr.Normalize(mean=pars["mean"], std=pars["std"]), tr.ToTensor()]) return composed_transforms(sample)
def transform_tr(self, sample): composed_transforms = transforms.Compose([ tr.FixedResize(size=(1024, 2048)), tr.ColorJitter(), tr.RandomGaussianBlur(), tr.RandomMotionBlur(), tr.RandomHorizontalFlip(), tr.RandomScaleCrop(base_size=self.args.base_size, crop_size=self.args.crop_size, fill=255), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor()]) return composed_transforms(sample)
def __init__(self, inputRes=None, samples_list_file='/home/xk/PycharmProjects/Pred_Seg/data/DAVIS16_samples_list.txt', transform=None, num_frame=4): f = open(samples_list_file, "r") lines = f.readlines() self.samples_list = lines self.transform = transform self.inputRes = inputRes self.toTensor = tr.ToTensor() self.num_frame = num_frame
def transform_val(self, sample): """Image transformations for validation""" targs = self.transform method = targs["method"] pars = targs["parameters"] composed_transforms = transforms.Compose([ tr.FixedResize(size=pars["outSize"]), tr.FixScaleCrop(cropSize=pars["outSize"]), tr.Normalize(mean=pars["mean"], std=(pars["std"])), tr.ToTensor()]) return composed_transforms(sample)
def transform_train(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(crop_size=self.crop_size), tr.RandomHorizontalFlip(), tr.RandomGaussianBlur(), tr.Normalize(mean=[0.4911], std=[0.1658]), tr.ToTensor() ]) transformed = composed_transforms(sample) transformed['image'] = transformed['image'].unsqueeze(0) return transformed
def transform_tr(self, sample): composed_transforms = transforms.Compose([ tr.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5), #tr.RandomGaussianBlur(), tr.HorizontalFlip(), tr.RandomScale(), tr.RandomCrop(size=(self.args.crop_size, self.args.crop_size)), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) return composed_transforms(sample)
def transform_tr(self, sample): composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), #tr.FixScaleCrop(crop_size=self.args['crop_size']), tr.FixedResize(size=self.args['crop_size']), #tr.RandomScaleCrop(base_size=self.args['base_size'], crop_size=self.args['crop_size'], min_scale = 1.0, max_scale = 1.5), #tr.RandomGaussianBlur(), tr.Normalize(mean=self.mean, std=self.std), tr.ToTensor() ]) return composed_transforms(sample)
def transform_train(self, sample): composed_transforms = transforms.Compose([ self.scalecrop, tr.RandomHorizontalFlip(), #tr.RandomScaleCrop(base_size=self.base_size, crop_size=self.crop_size, fill=255), tr.RandomGaussianBlur(), tr.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), tr.ToTensor() ]) return composed_transforms(sample)
def transform_tr(self, sample): composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), tr.RandomScaleCrop(base_size=self.cfg.DATASET.BASE_SIZE, crop_size=self.cfg.DATASET.CROP_SIZE), tr.RandomGaussianBlur(), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) return composed_transforms(sample)
def transform_tr(self, sample): composed_transforms = transforms.Compose([ tr.scaleNorm(), tr.RandomScale((1.0, 1.4)), tr.RandomHSV((0.9, 1.1), (0.9, 1.1), (25, 25)), tr.RandomCrop(image_h, image_w), tr.RandomFlip(), tr.ToTensor(), tr.Normalize() ]) return composed_transforms(sample)
def transform_val(self, sample): composed_transforms = transforms.Compose([ #tr.FixedResize(768,1536), #tr.FixScaleCrop(crop_size=self.args.crop_size), #tr.RandomScaleCrop(base_size=768, crop_size=768), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) return composed_transforms(sample)
def transforms_train_esp(self, sample): composed_transforms = transforms.Compose([ tr.RandomVerticalFlip(), tr.RandomHorizontalFlip(), tr.RandomAffine(degrees=40, scale=(.9, 1.1), shear=30), tr.ColorJitter(brightness=0.5, contrast=0.5, saturation=0.5), tr.FixedResize(size=self.input_size), tr.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), tr.ToTensor() ]) return composed_transforms(sample)
def __init__(self, args, split='train', ): super().__init__() self._dataset = ic.get_dataset('ilabs.vision', 'scarlet300') files = list(self._dataset[split]) images = sorted(f for f in files if f.endswith('.png')) masks_filename = self.CACHE_BOX % split if not os.path.exists(masks_filename): print('Generating CACHE for split', split) masks = [generate_first_box(fname) for fname in tqdm(images)] torch.save(masks, masks_filename) else: masks = torch.load(masks_filename) assert len(images) == len(masks) self._images = images self._masks = masks self.split = split self.args = args if split == 'train': self._transform = transforms.Compose([ # tr.RandomHorizontalFlip(), # tr.RandomScaleCrop(base_size=self.args.base_size, crop_size=self.args.crop_size, fill=0xffffff), tr.RandomGaussianBlur(), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) elif split == 'test': self._transform = transforms.Compose([ # tr.FixScaleCrop(crop_size=self.args.crop_size), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) else: raise ValueError('Unknown split: ' + split)
def transform_val(self, sample): """Transformations for images sample: {image:img, annotation:ann} Note: the mean and std is from imagenet """ composed_transforms = transforms.Compose([ tr.FixScaleCrop(crop_size=self.args.crop_size, fill=0), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) return composed_transforms(sample)
def transform_tr(self, sample): composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip( ), # given PIL image randomly with a given probability tr.RandomScaleCrop(base_size=self.args.base_size, crop_size=self.args.crop_size), tr.RandomGaussianBlur(), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) return composed_transforms(sample)
def transform_tr(self, sample): composed_transforms = transforms.Compose([ tr.RandomHorizontalFlip(), tr.RandomScaleCrop(base_size=self.base_size, crop_size=self.crop_size, fill=255), tr.RandomDarken(self.cfg, self.darken), #tr.RandomGaussianBlur(), #TODO Not working for depth channel tr.Normalize(mean=self.data_mean, std=self.data_std), tr.ToTensor() ]) return composed_transforms(sample)
def transform_val(self, sample): composed_transforms = transforms.Compose([ tr.FixScaleCrop(crop_size=self.args.crop_size), tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), tr.ToTensor() ]) transformed = composed_transforms(sample) transformed['imgId'] = sample['imgId'] transformed['resolution'] = sample['image'].size return transformed
def transform_tr(self, sample): """Image transformations for training""" targs = self.transform method = targs["method"] pars = targs["parameters"] composed_transforms = transforms.Compose([ tr.FixedResize(size=pars["outSize"]), tr.RandomRotate(degree=(90)), tr.RandomScaleCrop(baseSize=pars["baseSize"], cropSize=pars["outSize"], fill=255), tr.Normalize(mean=pars["mean"], std=pars["std"]), tr.ToTensor()]) return composed_transforms(sample)