def make_data_loader(args, **kwargs): if args.dataset == 'pascal': train_set = pascal.VOCSegmentation(args, split='train') val_set = pascal.VOCSegmentation(args, split='val') if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': train_set = cityscapes.CityscapesSegmentation(args, split='train') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, split='train') val_set = coco.COCOSegmentation(args, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class else: raise NotImplementedError
def make_data_loader(args, **kwargs): if args.dataset == 'pascal': train_set = pascal.VOCSegmentation(args, split='train') val_set = pascal.VOCSegmentation(args, split='val') if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': train_set = cityscapes.CityscapesSegmentation(args, split='train') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, split='train') val_set = coco.COCOSegmentation(args, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'ycb': train_set = SegDataset('/home/huipengly/data/Pictures/YCB_Video_Dataset/data', '/home/huipengly/data/Pictures/YCB_Video_Dataset/image_sets/train.txt', True) val_set = SegDataset('/home/huipengly/data/Pictures/YCB_Video_Dataset/data', '/home/huipengly/data/Pictures/YCB_Video_Dataset/image_sets/val.txt', False) train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=1, shuffle=True, **kwargs) test_loader = None return train_loader, val_loader, test_loader, 22 else: raise NotImplementedError
def make_data_loader(args, **kwargs): if args.dataset == 'pascal': train_set = pascal.VOCSegmentation(args, split='train') val_set = pascal.VOCSegmentation(args, split='val') if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': train_set = cityscapes.CityscapesSegmentation(args, split='train') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, split='train') val_set = coco.COCOSegmentation(args, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'flood': workpath = Path.db_root_dir('flood') train_data = flood.load_flood_train_data(workpath) train_dataset = flood.InMemoryDataset(train_data, flood.processAndAugment) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=16, shuffle=True, sampler=None, batch_sampler=None, num_workers=0, collate_fn=None, pin_memory=True, drop_last=False, timeout=0, worker_init_fn=None) valid_data = flood.load_flood_valid_data(workpath) valid_dataset = flood.InMemoryDataset(valid_data, flood.processTestIm) valid_loader = torch.utils.data.DataLoader( valid_dataset, batch_size=4, shuffle=True, sampler=None, batch_sampler=None, num_workers=0, collate_fn=lambda x: (torch.cat([a[0] for a in x], 0), torch.cat([a[1] for a in x], 0)), pin_memory=True, drop_last=False, timeout=0, worker_init_fn=None) test_data = flood.load_flood_valid_data(workpath) test_dataset = flood.InMemoryDataset(test_data, flood.processTestIm) test_loader = torch.utils.data.DataLoader( test_dataset, batch_size=4, shuffle=True, sampler=None, batch_sampler=None, num_workers=0, collate_fn=lambda x: (torch.cat([a[0] for a in x], 0), torch.cat([a[1] for a in x], 0)), pin_memory=True, drop_last=False, timeout=0, worker_init_fn=None) num_class = 2 return train_loader, valid_loader, test_loader, num_class else: raise NotImplementedError
def make_data_loader(args, **kwargs): if args.dataset == 'pascal': train_set = pascal.VOCSegmentation(args, split='train') val_set = pascal.VOCSegmentation(args, split='val') if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': train_set = cityscapes.CityscapesSegmentation(args, split='train') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, split='train') val_set = coco.COCOSegmentation(args, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'rip': classes = {'full': 7, 'level1': 2, 'level2': 3, 'level3': 5} import os from mypath import Path data_root = Path.db_root_dir(args.dataset) root = os.path.join(data_root, 'RipTrainingAllData') patches, level = args.rip_mode.split('-') if patches == 'patches': patches = 'COCOJSONPatches' elif patches == 'patches_v1': patches = 'COCOJSONPatches_v1' else: patches = 'COCOJSONs' # patches = 'COCOJSONPatches' if patches == 'patches' else 'COCOJSONs' train_ann_file = os.path.join(data_root, patches, level, 'cv_5_fold', 'train_1.json') val_ann_file = os.path.join(data_root, patches, level, 'cv_5_fold', 'val_1.json') train_set = rip.RIPSegmentation(args, split='train', root=root, ann_file=train_ann_file) val_set = rip.RIPSegmentation(args, split='val', root=root, ann_file=val_ann_file) num_classes = classes[level] # NOTE: drop_last=True here to avoid situation when batch_size=1 which causes BatchNorm2d errors train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, drop_last=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_classes else: raise NotImplementedError
def make_data_loader(args, **kwargs): if args.dataset == 'pascal' or args.dataset == 'pascal_toy': if args.dataset == 'pascal': p = pascal else: p = pascal_toy train_set = p.VOCSegmentation(args, split='train') val_set = p.VOCSegmentation(args, split='val') if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = val_loader return train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': train_set = cityscapes.CityscapesSegmentation(args, split='train') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class ''' elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, split='train') val_set = coco.COCOSegmentation(args, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class ''' elif args.dataset == 'bdd' or args.dataset == 'bdd_toy': if args.dataset == 'bdd': train_set = bdd100k.BDD100kSegmentation(args, split='train') val_set = bdd100k.BDD100kSegmentation(args, split='val') test_set = bdd100k.BDD100kSegmentation(args, split='test') else: train_set = bdd_toy.BDD100kSegmentation(args, split='train') val_set = bdd_toy.BDD100kSegmentation(args, split='val') test_set = bdd_toy.BDD100kSegmentation(args, split='test') num_classes = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_classes elif args.dataset == 'nice': dataset = nice.Nice(args) num_classes = dataset.NUM_CLASSES loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, **kwargs) return loader, num_classes else: dataset = nice.Nice(args, root=args.dataset) num_classes = dataset.NUM_CLASSES loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, **kwargs) return loader, num_classes
"opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() cfg = get_cfg_defaults() cfg.merge_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() print(cfg) pascal_voc_val = pascal.VOCSegmentation(cfg, split='val') sbd = sbd.SBDSegmentation(cfg, split=['train', 'val']) pascal_voc_train = pascal.VOCSegmentation(cfg, split='train') dataset = CombineDBs([pascal_voc_train, sbd], excluded=[pascal_voc_val]) dataloader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=True, num_workers=0) for ii, sample in enumerate(dataloader): for jj in range(sample["image"].size()[0]): img = sample['image'].numpy() gt = sample['label'].numpy() tmp = np.array(gt[jj]).astype(np.uint8) segmap = decode_segmap(tmp, dataset='pascal') img_tmp = np.transpose(img[jj], axes=[1, 2, 0])
def make_data_loader(args, **kwargs): if args.dataset == 'pascal': train_set = pascal.VOCSegmentation(args, split='train') val_set = pascal.VOCSegmentation(args, split='val') if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': train_set = cityscapes.CityscapesSegmentation(args, split='train') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, split='train') val_set = coco.COCOSegmentation(args, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'rsc': train_set = rsc.RSCDataset( r"/home/ma-user/work/RSC/data/train/images/", r"/home/ma-user/work/RSC/data/train/labels/") val_set = rsc.RSCDataset(r"/home/ma-user/work/RSC/data/val/images/", r"/home/ma-user/work/RSC/data/val/labels/") #train_set=rsc.RSCDataset(r"E:\huawei\data\train\images\\",r"E:\huawei\data\train\labels\\") #val_set=rsc.RSCDataset(r"E:\huawei\data\val\images\\",r"E:\huawei\data\val\labels\\") num_class = 2 test_loader = None train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class else: raise NotImplementedError
if __name__ == "__main__": import matplotlib.pyplot as plt from dataloaders.datasets import pascal, sbd from dataloaders import sbd import torch import numpy as np from dataloaders.utils import decode_segmap import argparse parser = argparse.ArgumentParser() args = parser.parse_args() args.base_size = 513 args.crop_size = 513 pascal_voc_val = pascal.VOCSegmentation(args, split='val') sbd = sbd.SBDSegmentation(args, split=['train', 'val']) pascal_voc_train = pascal.VOCSegmentation(args, split='train') dataset = CombineDBs([pascal_voc_train, sbd], excluded=[pascal_voc_val]) dataloader = torch.utils.data.DataLoader(dataset, batch_size=2, shuffle=True, num_workers=0) for ii, sample in enumerate(dataloader): for jj in range(sample["image"].size()[0]): img = sample['image'].numpy() gt = sample['label'].numpy() tmp = np.array(gt[jj]).astype(np.uint8) segmap = decode_segmap(tmp, dataset='pascal') img_tmp = np.transpose(img[jj], axes=[1, 2, 0]) img_tmp *= (0.229, 0.224, 0.225) img_tmp += (0.485, 0.456, 0.406) img_tmp *= 255.0
def make_data_loader(args, **kwargs): if args.dataset == 'pascal': train_set = pascal.VOCSegmentation(args, split='train') val_set = pascal.VOCSegmentation(args, split='val') if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': train_set = cityscapes.CityscapesSegmentation(args, split='train') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, split='train') val_set = coco.COCOSegmentation(args, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'drive': num_class = 2 train_path = '../data/DRIVE/training/images' train_mask = '../data/DRIVE/training/1st_manual' test_path = '../data/DRIVE/test/' #images and 1st_manual simple_transform = tfs.Compose([tfs.ToTensor()]) pw = args.pw ph = args.ph npatches = args.npatches train_ipatches, train_lpatches, valid_ipatches, valid_lpatches = retina.getdata( train_path, train_mask, ph, pw, npatches) #test_patches,test_mask_patches = retina.getdata(test_path+'images' ,test_path+'1st_manual',False,0,0,0) train_set = retina.Retinal(train_ipatches, train_lpatches, transform=simple_transform) valid_set = retina.Retinal(valid_ipatches, valid_lpatches, transform=simple_transform) #test_set = retina.Retinal(test_patches,test_mask_patches,simple_transform) train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True) valid_loader = DataLoader(valid_set, batch_size=args.batch_size, shuffle=False) #test_loader = DataLoader(test_set,batch_size=args.batch_size,shuffle=False) test_loader = None return train_loader, valid_loader, test_loader, num_class elif args.dataset == 'brain': num_class = 4 train_set, val_set = brats.get_Brain_data() train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True) valid_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False) test_loader = None return train_loader, valid_loader, test_loader, num_class else: raise NotImplementedError
def make_data_loader(args, **kwargs): normalize = transform.Normalize(mean=[0.5, 0.5, 0.5], std=[0.225, 0.225, 0.225]) transforms = transform.Compose([ transform.ToTensor(), normalize, ]) if args.dataset == 'pascal': train_set = pascal.VOCSegmentation(args, split='train') val_set = pascal.VOCSegmentation(args, split='val') if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': train_set = cityscapes.CityscapesSegmentation(args, split='train') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, split='train') val_set = coco.COCOSegmentation(args, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'mpgw': train_set = SegmentDataset(cfg, cfg["train_set"], transforms=transforms) val_set = SegmentDataset(cfg, cfg["valid_set"], is_train=False, transforms=transforms) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class else: raise NotImplementedError
def make_data_loader(args, **kwargs): if args.dataset == "pascal": if args.task == "segmentation": train_set = pascal.VOCSegmentation(args, split="train") val_set = pascal.VOCSegmentation(args, split="val") if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=["train", "val"]) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) elif args.task == "panoptic": train_set = pascal.VOCPanoptic(args, split="train") val_set = pascal.VOCPanoptic(args, split="val") num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == "cityscapes": if args.task == "segmentation": train_set = cityscapes.CityscapesSegmentation(args, split="train") val_set = cityscapes.CityscapesSegmentation(args, split="val") test_set = cityscapes.CityscapesSegmentation(args, split="test") elif args.task == "panoptic": train_set = cityscapes.CityscapesPanoptic(args, split="train") val_set = cityscapes.CityscapesPanoptic(args, split="val") test_set = cityscapes.CityscapesPanoptic(args, split="test") else: print("UNKNOWN TASK!") raise num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == "coco": train_set = coco.COCOSegmentation(args, split="train") val_set = coco.COCOSegmentation(args, split="val") num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class else: raise NotImplementedError
def make_data_loader(args, **kwargs): if args.dataset == 'pascal': train_set = pascal.VOCSegmentation(args, split='train') val_set = pascal.VOCSegmentation(args, split='val') test_set = None if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) make_dataset_val(train_set, val_set) if args.use_divide_data: train_id_file = 'train_id.txt' test_id_file = 'test_id.txt' if os.path.isfile(train_id_file) & os.path.isfile( test_id_file): print( 'Find the exsiting divided file, Loading.... - . -\n') train_set, test_set = load_combined_dataset(train_set) else: train_set, test_set = divide_combineddataset(train_set) # make_dataset(train_set,test_set) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': train_set = cityscapes.CityscapesSegmentation(args, split='train') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, split='train') val_set = coco.COCOSegmentation(args, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class else: raise NotImplementedError
def make_data_loader(args, **kwargs): if args.dataset == 'pascal': train_set = pascal.VOCSegmentation(args, split='train') val_set = pascal.VOCSegmentation(args, split='val') if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': train_set = cityscapes.CityscapesSegmentation(args, split='train') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, split='train') val_set = coco.COCOSegmentation(args, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'carvana': dataset_params = { 'folds': args.folds, 'fold_num': args.fold, } transform_train = make_augmentation_transform( 'crop_fliplr_affine_color') transform_valid = make_augmentation_transform('crop_fliplr') train_set = dataset.CarvanaTrainDataset(**dataset_params, mode='train', transform=transform_train) val_set = dataset.CarvanaTrainDataset(**dataset_params, mode='valid', transform=transform_valid) train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=1, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, 2 else: raise NotImplementedError
def make_data_loader(args, **kwargs): """ if args.dist: print("=> Using Distribued Sampler") if args.dataset == 'cityscapes': if args.autodeeplab == 'search': train_set1, train_set2 = cityscapes.twoTrainSeg(args) num_class = train_set1.NUM_CLASSES sampler1 = torch.utils.data.distributed.DistributedSampler(train_set1) sampler2 = torch.utils.data.distributed.DistributedSampler(train_set2) train_loader1 = DataLoader(train_set1, batch_size=args.batch_size, shuffle=False, sampler=sampler1, **kwargs) train_loader2 = DataLoader(train_set2, batch_size=args.batch_size, shuffle=False, sampler=sampler2, **kwargs) elif args.autodeeplab == 'train': train_set = cityscapes.CityscapesSegmentation(args, split='retrain') num_class = train_set.NUM_CLASSES sampler1 = torch.utils.data.distributed.DistributedSampler(train_set) train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=False, sampler=sampler1, **kwargs) else: raise Exception('autodeeplab param not set properly') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') sampler3 = torch.utils.data.distributed.DistributedSampler(val_set) sampler4 = torch.utils.data.distributed.DistributedSampler(test_set) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, sampler=sampler3, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, sampler=sampler4, **kwargs) if args.autodeeplab == 'search': return train_loader1, train_loader2, val_loader, test_loader, num_class elif args.autodeeplab == 'train': return train_loader, num_class, sampler1 else: raise NotImplementedError else: """ if args.dataset == 'pascal': train_set = pascal.VOCSegmentation(args, split='train') val_set = pascal.VOCSegmentation(args, split='val') if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': if args.autodeeplab == 'search': train_set1, train_set2 = cityscapes.twoTrainSeg(args) num_class = train_set1.NUM_CLASSES train_loader1 = DataLoader(train_set1, batch_size=args.batch_size, shuffle=True, **kwargs) train_loader2 = DataLoader(train_set2, batch_size=args.batch_size, shuffle=True, **kwargs) elif args.autodeeplab == 'train': train_set = cityscapes.CityscapesSegmentation(args, split='retrain') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) else: raise Exception('autodeeplab param not set properly') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) if args.autodeeplab == 'search': return train_loader1, train_loader2, val_loader, test_loader, num_class elif args.autodeeplab == 'train': return train_loader, num_class elif args.dataset == 'custom': if args.autodeeplab == 'search': train_set1, train_set2 = custom.twoTrainSeg(args) num_class = train_set1.NUM_CLASSES train_loader1 = DataLoader(train_set1, batch_size=args.batch_size, shuffle=True, **kwargs) train_loader2 = DataLoader(train_set2, batch_size=args.batch_size, shuffle=True, **kwargs) elif args.autodeeplab == 'train': train_set = custom.CustomSegmentation(args, split='retrain') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) else: raise Exception('autodeeplab param not set properly') val_set = custom.CustomSegmentation(args, split='val') test_set = custom.CustomSegmentation(args, split='test') val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) if args.autodeeplab == 'search': return train_loader1, train_loader2, val_loader, test_loader, num_class elif args.autodeeplab == 'train': return train_loader, num_class elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, split='train') val_set = coco.COCOSegmentation(args, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, train_loader, val_loader, test_loader, num_class elif args.dataset == 'kd': train_set = kd.CityscapesSegmentation(args, split='train') val_set = kd.CityscapesSegmentation(args, split='val') test_set = kd.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader1 = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) train_loader2 = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader1, train_loader2, val_loader, test_loader, num_class else: raise NotImplementedError
def make_data_loader(args, **kwargs): if args.dataset == 'pascal': train_set = pascal.VOCSegmentation(args, split='train') val_set = pascal.VOCSegmentation(args, split='val') if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': train_set = cityscapes.CityscapesSegmentation(args, split='train') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, split='train') val_set = coco.COCOSegmentation(args, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'mydataset': train_transform = transforms.Compose([ transforms.ColorJitter(brightness=0.5, contrast=0.25, saturation=0.25), transforms.ToTensor(), transforms.Normalize( [0.519401, 0.359217, 0.310136], [0.061113, 0.048637, 0.041166 ]), #R_var is 0.061113, G_var is 0.048637, B_var is 0.041166 ]) valid_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize( [0.517446, 0.360147, 0.310427], [0.061526, 0.049087, 0.041330 ]) #R_var is 0.061526, G_var is 0.049087, B_var is 0.041330 ]) train_set = mydataset.SegmentDataset(args, split='train', transform=train_transform) valid_set = mydataset.SegmentDataset(args, split='valid', transform=valid_transform) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) valid_loader = DataLoader(valid_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, valid_loader, test_loader, num_class else: raise NotImplementedError
def make_data_loader(args, **kwargs): root = args.data_path if args.dist: print("=> Using Distribued Sampler") if args.dataset == 'cityscapes': if args.autodeeplab == 'train': train_set = cityscapes.CityscapesSegmentation(args, root, split='retrain') num_class = train_set.NUM_CLASSES train_sampler = torch.utils.data.distributed.DistributedSampler( train_set) train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=False, sampler=train_sampler, **kwargs) val_set = cityscapes.CityscapesSegmentation(args, root, split='val') test_set = cityscapes.CityscapesSegmentation(args, root, split='test') val_sampler = torch.utils.data.distributed.DistributedSampler( val_set) test_sampler = torch.utils.data.distributed.DistributedSampler( test_set) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, sampler=val_sampler, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, sampler=test_sampler, **kwargs) elif args.autodeeplab == 'train_seg': dataset_cfg = { 'cityscapes': dict(root=args.data_path, split='train', is_train=True, crop_size=(args.image_height, args.image_width), mirror=True, min_scale=0.5, max_scale=2.0, scale_step_size=0.1, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) } train_set = Cityscapes(**dataset_cfg['cityscapes']) num_class = train_set.num_classes train_sampler = torch.utils.data.distributed.DistributedSampler( train_set) train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=False, sampler=train_sampler, **kwargs) dataset_val_cfg = { 'cityscapes': dict(root=args.data_path, split='val', is_train=False, crop_size=(args.eval_height, args.eval_width), mirror=True, min_scale=0.5, max_scale=2.0, scale_step_size=0.1, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) } val_set = Cityscapes(**dataset_val_cfg['cityscapes']) val_sampler = torch.utils.data.distributed.DistributedSampler( val_set) val_loader = DataLoader(val_set, batch_size=max(1, args.batch_size // 4), shuffle=False, sampler=val_sampler, num_workers=args.workers, pin_memory=True, drop_last=False) elif args.autodeeplab == 'train_seg_panoptic': dataset_cfg = { 'cityscapes_panoptic': dict(root=args.data_path, split='train', is_train=True, crop_size=(args.image_height, args.image_width), mirror=True, min_scale=0.5, max_scale=2.0, scale_step_size=0.1, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), semantic_only=False, ignore_stuff_in_offset=True, small_instance_area=4096, small_instance_weight=3) } train_set = CityscapesPanoptic( **dataset_cfg['cityscapes_panoptic']) num_class = train_set.num_classes train_sampler = torch.utils.data.distributed.DistributedSampler( train_set) train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=False, sampler=train_sampler, **kwargs) dataset_val_cfg = { 'cityscapes_panoptic': dict(root=args.data_path, split='val', is_train=False, crop_size=(args.eval_height, args.eval_width), mirror=True, min_scale=0.5, max_scale=2.0, scale_step_size=0.1, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), semantic_only=False, ignore_stuff_in_offset=True, small_instance_area=4096, small_instance_weight=3) } val_set = Cityscapes(**dataset_val_cfg['cityscapes_panoptic']) val_sampler = torch.utils.data.distributed.DistributedSampler( val_set) val_loader = DataLoader(val_set, batch_size=max(1, args.batch_size // 4), shuffle=False, sampler=val_sampler, num_workers=args.workers, pin_memory=True, drop_last=False) else: raise Exception('autodeeplab param not set properly') return train_loader, train_sampler, val_loader, val_sampler, num_class elif args.dataset == 'coco': if args.autodeeplab == 'train_seg_panoptic': dataset_cfg = { 'coco_panoptic': dict(root=args.data_path, split='train2017', is_train=True, min_resize_value=args.image_height, max_resize_value=args.image_height, resize_factor=32, crop_size=(args.image_height, args.image_width), mirror=True, min_scale=0.5, max_scale=1.5, scale_step_size=0.1, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), semantic_only=False, ignore_stuff_in_offset=True, small_instance_area=4096, small_instance_weight=3) } train_set = COCOPanoptic(**dataset_cfg['coco_panoptic']) num_class = train_set.num_classes train_sampler = torch.utils.data.distributed.DistributedSampler( train_set) train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=False, sampler=train_sampler, **kwargs) # train_set = coco.COCOSegmentation(args, root, split='train') # root=args.data_path # val_set = coco.COCOSegmentation(args, root, split='val') dataset_val_cfg = { 'coco_panoptic': dict(root=args.data_path, split='val2017', is_train=True, min_resize_value=args.image_height, max_resize_value=args.image_height, resize_factor=32, crop_size=(args.eval_height, args.eval_width), mirror=False, min_scale=1, max_scale=1, scale_step_size=0, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), semantic_only=False, ignore_stuff_in_offset=True, small_instance_area=4096, small_instance_weight=3) } val_set = COCOPanoptic(**dataset_val_cfg['coco_panoptic']) val_sampler = torch.utils.data.distributed.DistributedSampler( val_set) val_loader = DataLoader(val_set, batch_size=args.batch_size * 4, shuffle=False, sampler=val_sampler, num_workers=args.workers, pin_memory=True, drop_last=False) return train_loader, train_sampler, val_loader, val_sampler, num_class else: raise NotImplementedError else: if args.dataset == 'pascal': train_set = pascal.VOCSegmentation(args, root, split='train') val_set = pascal.VOCSegmentation(args, root, split='val') if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, root, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': if args.autodeeplab == 'train_seg': dataset_cfg = { 'cityscapes': dict(root=args.data_path, split='train', is_train=True, crop_size=(args.image_height, args.image_width), mirror=True, min_scale=0.5, max_scale=2.0, scale_step_size=0.1, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) } train_set = Cityscapes(**dataset_cfg['cityscapes']) num_class = train_set.num_classes train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=False, **kwargs) dataset_val_cfg = { 'cityscapes': dict(root=args.data_path, split='val', is_train=False, crop_size=(args.eval_height, args.eval_width), mirror=True, min_scale=0.5, max_scale=2.0, scale_step_size=0.1, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) } val_set = Cityscapes(**dataset_val_cfg['cityscapes']) val_loader = DataLoader(val_set, batch_size=max(1, args.batch_size // 4), shuffle=False, num_workers=args.workers, pin_memory=True, drop_last=False) elif args.autodeeplab == 'train_seg_panoptic': dataset_cfg = { 'cityscapes_panoptic': dict(root=args.data_path, split='train', is_train=True, crop_size=(args.image_height, args.image_width), mirror=True, min_scale=0.5, max_scale=2.0, scale_step_size=0.1, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), semantic_only=False, ignore_stuff_in_offset=True, small_instance_area=4096, small_instance_weight=3) } train_set = CityscapesPanoptic( **dataset_cfg['cityscapes_panoptic']) num_class = train_set.num_classes train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=False, **kwargs) dataset_val_cfg = { 'cityscapes_panoptic': dict(root=args.data_path, split='val', is_train=False, crop_size=(args.eval_height, args.eval_width), mirror=True, min_scale=0.5, max_scale=2.0, scale_step_size=0.1, mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225), semantic_only=False, ignore_stuff_in_offset=True, small_instance_area=4096, small_instance_weight=3) } val_set = Cityscapes(**dataset_val_cfg['cityscapes_panoptic']) val_loader = DataLoader(val_set, batch_size=max(1, args.batch_size // 4), shuffle=False, num_workers=args.workers, pin_memory=True, drop_last=False) else: raise Exception('autodeeplab param not set properly') return train_loader, val_loader, num_class elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, root, split='train') val_set = coco.COCOSegmentation(args, root, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, train_loader, val_loader, test_loader, num_class elif args.dataset == 'kd': train_set = kd.CityscapesSegmentation(args, root, split='train') val_set = kd.CityscapesSegmentation(args, root, split='val') test_set = kd.CityscapesSegmentation(args, root, split='test') num_class = train_set.NUM_CLASSES train_loader1 = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) train_loader2 = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader1, train_loader2, val_loader, test_loader, num_class else: raise NotImplementedError
def make_data_loader(args, **kwargs): ''' classes = { 'pascal' : ['aeroplane','bicycle','bird','boat', 'bottle','bus','car','cat', 'chair','cow','diningtable','dog', 'horse','motorbike','person','pottedplant', 'sheep','sofa','train','tvmonitor'] } ft_dir = os.path.join(Path.db_root_dir('wiki'), 'wiki.en.bin') print("Loading fasttext embedding - ", end='') ft = fasttext.load_model(ft_dir) print("Done") ''' if args.dataset == 'pascal' or args.dataset == 'pascal_toy': ''' classes = classes['pascal'] nft = {} for word in classes: nft[word] = ft[word] ''' if args.dataset == 'pascal': p = pascal else: p = pascal_toy train_set = p.VOCSegmentation(args, split='train') val_set = p.VOCSegmentation(args, split='val') if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = val_loader return train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': train_set = cityscapes.CityscapesSegmentation(args, split='train') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class ''' elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, split='train') val_set = coco.COCOSegmentation(args, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class ''' elif args.dataset == 'bdd' or args.dataset == 'bdd_toy': if args.dataset == 'bdd': train_set = bdd100k.BDD100kSegmentation(args, split='train') val_set = bdd100k.BDD100kSegmentation(args, split='val') test_set = bdd100k.BDD100kSegmentation(args, split='test') else: train_set = bdd_toy.BDD100kSegmentation(args, split='train') val_set = bdd_toy.BDD100kSegmentation(args, split='val') test_set = bdd_toy.BDD100kSegmentation(args, split='test') num_classes = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_classes elif args.dataset == 'nice': dataset = nice.Nice(args) num_classes = dataset.NUM_CLASSES loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, **kwargs) return loader, num_classes elif args.dataset == 'embedding': dataset = embedding.Embedding(args) num_classes = dataset.NUM_CLASSES loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, **kwargs) return loader, num_classes else: dataset = nice.Nice(args, root=args.dataset) num_classes = dataset.NUM_CLASSES loader = DataLoader(dataset, batch_size=args.batch_size, shuffle=False, **kwargs) return loader, num_classes
def make_data_loader(args, **kwargs): if args.dataset == 'pascal': train_set = pascal.VOCSegmentation(args, split='train') val_set = pascal.VOCSegmentation(args, split='val') if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': train_set = cityscapes.CityscapesSegmentation(args, split='train') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, split='train') val_set = coco.COCOSegmentation(args, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'whales': train_path = "../../data/HumpbackWhales/segmentacion/train/" val_path = "../../data/HumpbackWhales/segmentacion/val/" test_path = "../../data/HumpbackWhales/segmentacion/test/" train_set = whales.WhalesSegmentation( args, images_path=train_path + 'mask_images_train/', label_path=train_path + 'mask_train/', image=os.listdir(train_path + 'mask_images_train/'), split='train', drop_last=True) val_set = whales.WhalesSegmentation( args, images_path=val_path + 'mask_images_val/', label_path=val_path + 'mask_val/', image=os.listdir(val_path + 'mask_images_val/'), split='val', drop_last=True) test_set = whales.WhalesSegmentation( args, images_path=test_path, label_path=0, image=os.listdir(test_path), split='test', drop_last=True) #,label=os.listdir(test_path) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class else: raise NotImplementedError
def make_data_loader(args, **kwargs): crop_size = args.crop_size gt_size = args.gt_size if args.dataset == 'pascal' or args.dataset == 'click': composed_transforms_tr = transforms.Compose([ tr.RandomHorizontalFlip(), tr.ScaleNRotate(rots=(-20, 20), scales=(.75, 1.25)), tr.CropFromMask(crop_elems=('image', 'gt'), relax=20, zero_pad=True, jitters_bound=(40, 70)), tr.FixedResize( resolutions={ 'crop_image': (crop_size, crop_size), 'crop_gt': (gt_size, gt_size) }), tr.Normalize(elems='crop_image'), tr.ToTensor() ]) composed_transforms_val = transforms.Compose([ tr.CropFromMask(crop_elems=('image', 'gt'), relax=20, zero_pad=True, jitters_bound=(50, 51)), tr.FixedResize( resolutions={ 'crop_image': (crop_size, crop_size), 'crop_gt': (gt_size, gt_size) }), tr.Normalize(elems='crop_image'), tr.ToTensor() ]) train_set = pascal.VOCSegmentation(split='train', transform=composed_transforms_tr) if args.dataset == 'click': train_set.reset_target_list(args) val_set = pascal.VOCSegmentation(split='val', transform=composed_transforms_val) if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, drop_last=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None NUM_CLASSES = 2 return train_loader, val_loader, test_loader, NUM_CLASSES elif args.dataset == 'grabcut': composed_transforms_val = transforms.Compose([ tr.CropFromMask(crop_elems=('image', 'gt'), relax=20, zero_pad=True, jitters_bound=(50, 51)), tr.FixedResize( resolutions={ 'crop_image': (crop_size, crop_size), 'crop_gt': (gt_size, gt_size) }), tr.Normalize(elems='crop_image'), tr.ToTensor() ]) val_set = grab_berkeley_eval.GrabBerkely( which='grabcut', transform=composed_transforms_val) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None train_loader = None NUM_CLASSES = 2 return train_loader, val_loader, test_loader, NUM_CLASSES elif args.dataset == 'bekeley': composed_transforms_val = transforms.Compose([ tr.CropFromMask(crop_elems=('image', 'gt'), relax=20, zero_pad=True, jitters_bound=(50, 51)), tr.FixedResize( resolutions={ 'crop_image': (crop_size, crop_size), 'crop_gt': (gt_size, gt_size) }), tr.Normalize(elems='crop_image'), tr.ToTensor() ]) val_set = grab_berkeley_eval.GrabBerkely( which='bekeley', transform=composed_transforms_val) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None train_loader = None NUM_CLASSES = 2 return train_loader, val_loader, test_loader, NUM_CLASSES elif args.dataset == 'cityscapes': train_set = cityscapes.CityscapesSegmentation(args, split='train') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == 'coco': val_set = coco_eval.COCOSegmentation(split='val', cat=args.coco_part) num_class = 2 train_loader = None val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class # elif args.dataset == 'click': # train_set = click_dataset.ClickDataset(split='train') # val_set = click_dataset.ClickDataset(split='val') # num_class = 2 # train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) # val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) # test_loader = None # return train_loader, val_loader, test_loader, num_class else: raise NotImplementedError
def make_data_loader(args, **kwargs): if args.dataset == 'pascal': train_set = pascal.VOCSegmentation(args, split='train') val_set = pascal.VOCSegmentation(args, split='val') if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': if args.autodeeplab == 'search': train_set1, train_set2 = cityscapes.twoTrainSeg(args) num_class = train_set1.NUM_CLASSES train_loader1 = DataLoader(train_set1, batch_size=args.batch_size, shuffle=True, **kwargs) train_loader2 = DataLoader(train_set2, batch_size=args.batch_size, shuffle=True, **kwargs) elif args.autodeeplab == 'train': train_set = cityscapes.CityscapesSegmentation(args, split='train') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) else: raise Exception('autodeeplab param not set properly') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) if args.autodeeplab == 'search': return train_loader1, train_loader2, val_loader, test_loader, num_class elif args.autodeeplab == 'train': return train_loader, val_loader, test_loader, num_class elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, split='train') val_set = coco.COCOSegmentation(args, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, train_loader, val_loader, test_loader, num_class elif args.dataset == 'kd': train_set = kd.CityscapesSegmentation(args, split='train') val_set = kd.CityscapesSegmentation(args, split='val') test_set = kd.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader1 = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) train_loader2 = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader1, train_loader2, val_loader, test_loader, num_class else: raise NotImplementedError
def make_data_loader(args, **kwargs): if args.dataset == 'pascal': train_set = pascal.VOCSegmentation(args, split='train') val_set = pascal.VOCSegmentation(args, split='val') if args.use_sbd: sbd_train = sbd.SBDSegmentation(args, split=['train', 'val']) train_set = combine_dbs.CombineDBs([train_set, sbd_train], excluded=[val_set]) num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class elif args.dataset == 'cityscapes': train_set = cityscapes.CityscapesSegmentation(args, split='train') val_set = cityscapes.CityscapesSegmentation(args, split='val') test_set = cityscapes.CityscapesSegmentation(args, split='test') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == 'apollo' or args.dataset == 'apollo_seg': num_class = args.num_class min_depth = args.min_depth max_depth = args.max_depth train_n_val = apollo.ApolloDepthSegmentation(args, split='train', num_class=num_class, min_depth=min_depth, max_depth=max_depth) n_train = int(train_n_val.__len__() * 0.8) n_val = train_n_val.__len__() - n_train train_set, val_set = random_split(train_n_val, [n_train, n_val]) # val_set = apollo.ApolloDepthSegmentation(args, split='val', num_class=num_class, # min_depth=min_depth, max_depth=max_depth) test_set = apollo.ApolloDepthSegmentation(args, split='test', num_class=num_class, min_depth=min_depth, max_depth=max_depth) train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == 'farsight' or args.dataset == 'farsight_seg': num_class = args.num_class min_depth = args.min_depth max_depth = args.max_depth train_n_val = farsight.FarsightDepthSegmentation(args, split='train', num_class=num_class, min_depth=min_depth, max_depth=max_depth) n_train = int(train_n_val.__len__() * 0.8) n_val = train_n_val.__len__() - n_train train_set, val_set = random_split(train_n_val, [n_train, n_val]) # val_set = farsight.FarsightDepthSegmentation(args, split='val', num_class=num_class, # min_depth=min_depth, max_depth=max_depth) test_set = farsight.FarsightDepthSegmentation(args, split='test', num_class=num_class, min_depth=min_depth, max_depth=max_depth) train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = DataLoader(test_set, batch_size=args.batch_size, shuffle=False, **kwargs) return train_loader, val_loader, test_loader, num_class elif args.dataset == 'coco': train_set = coco.COCOSegmentation(args, split='train') val_set = coco.COCOSegmentation(args, split='val') num_class = train_set.NUM_CLASSES train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True, **kwargs) val_loader = DataLoader(val_set, batch_size=args.batch_size, shuffle=False, **kwargs) test_loader = None return train_loader, val_loader, test_loader, num_class else: raise NotImplementedError