def NYUDepth_loader(data_path, batch_size=32, isTrain=True): if isTrain: traindir = os.path.join(data_path, 'train') print('Train file path is ', traindir) if os.path.exists(traindir): print('Train dataset file path is existed!') train_set = nyu_dataloader.NYUDataset(traindir, type='train') train_loader = torch.utils.data.DataLoader( train_set, batch_size=batch_size, shuffle=True, num_workers=args.workers, pin_memory=True, worker_init_fn=lambda work_id: np.random.seed(work_id)) return train_loader else: valdir = os.path.join(data_path, 'val') print('Test file path is ', valdir) if os.path.exists(valdir): print('Test dataset file path is existed!') val_set = nyu_dataloader.NYUDataset(valdir, type='val') val_loader = torch.utils.data.DataLoader(val_set, batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True) return val_loader
def NYUDepth_loader(data_path, batch_size=32, isTrain=True): if isTrain: traindir = os.path.join(data_path, 'train') print(traindir) if os.path.exists(traindir): print('训练集目录存在') trainset = nyu_dataloader.NYUDataset(traindir, type='train') train_loader = torch.utils.data.DataLoader(trainset, batch_size=batch_size, shuffle=True) # @wx 多线程读取失败 return train_loader else: valdir = os.path.join(data_path, 'val') print(valdir) if os.path.exists(valdir): print('测试集目录存在') valset = nyu_dataloader.NYUDataset(valdir, type='val') val_loader = torch.utils.data.DataLoader( valset, batch_size=1, shuffle=False # shuffle 测试时是否设置成False batch_size 恒定为1 ) return val_loader
def create_loader(args): traindir = os.path.join(Path.db_root_dir(args.dataset), 'train') if os.path.exists(traindir): print('Train dataset "{}" is existed!'.format(traindir)) else: print('Train dataset "{}" is not existed!'.format(traindir)) exit(-1) valdir = os.path.join(Path.db_root_dir(args.dataset), 'val') if os.path.exists(traindir): print('Train dataset "{}" is existed!'.format(valdir)) else: print('Train dataset "{}" is not existed!'.format(valdir)) exit(-1) if args.dataset == 'kitti': train_set = kitti_dataloader.KITTIDataset(traindir, type='train') val_set = kitti_dataloader.KITTIDataset(valdir, type='val') # sample 3200 pictures for validation from val set weights = [1 for i in range(len(val_set))] print('weights:', len(weights)) sampler = torch.utils.data.WeightedRandomSampler(weights, num_samples=3200) elif args.dataset == 'nyu': train_set = nyu_dataloader.NYUDataset(traindir, type='train') val_set = nyu_dataloader.NYUDataset(valdir, type='val') else: print('no dataset named as ', args.dataset) exit(-1) train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) if args.dataset == 'kitti': val_loader = torch.utils.data.DataLoader(val_set, batch_size=args.batch_size, sampler=sampler, num_workers=args.workers, pin_memory=True) else: val_loader = torch.utils.data.DataLoader(val_set, batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True) return train_loader, val_loader
def create_loader(dataset='kitti'): root_dir = Path.db_root_dir(dataset) if dataset == 'kitti': train_set = KittiFolder(root_dir, mode='train', size=(385, 513)) test_set = KittiFolder(root_dir, mode='test', size=(385, 513)) train_loader = torch.utils.data.DataLoader(train_set, batch_size=32, shuffle=False, num_workers=0, pin_memory=True) test_loader = torch.utils.data.DataLoader(test_set, batch_size=32, shuffle=False, num_workers=0, pin_memory=True) return train_loader, test_loader else: traindir = os.path.join(root_dir, 'train') if os.path.exists(traindir): print('Train dataset "{}" is existed!'.format(traindir)) else: print('Train dataset "{}" is not existed!'.format(traindir)) exit(-1) valdir = os.path.join(root_dir, 'val') if os.path.exists(traindir): print('Train dataset "{}" is existed!'.format(valdir)) else: print('Train dataset "{}" is not existed!'.format(valdir)) exit(-1) train_set = nyu_dataloader.NYUDataset(traindir, type='train') val_set = nyu_dataloader.NYUDataset(valdir, type='val') train_loader = torch.utils.data.DataLoader(train_set, batch_size=4, shuffle=False, num_workers=0, pin_memory=True) val_loader = torch.utils.data.DataLoader(val_set, batch_size=4, shuffle=False, num_workers=0, pin_memory=True) return train_loader, val_loader
def create_loader(args): #root_dir = Path.db_root_dir(args.dataset) if args.dataset == 'kitti': # train_set = KittiFolder(root_dir, mode='train', size=(385, 513)) # test_set = KittiFolder(root_dir, mode='test', size=(385, 513)) # train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, # num_workers=args.workers, pin_memory=True) # test_loader = torch.utils.data.DataLoader(test_set, batch_size=1, shuffle=False, # num_workers=args.workers, pin_memory=True) # return train_loader, test_loader ## TODO implement KITTI assert "Not implemented" else: # traindir = os.path.join(root_dir, 'train') # if os.path.exists(traindir): # print('Train dataset "{}" is existed!'.format(traindir)) # else: # print('Train dataset "{}" is not existed!'.format(traindir)) # exit(-1) # # valdir = os.path.join(root_dir, 'val') # if os.path.exists(traindir): # print('Train dataset "{}" is existed!'.format(valdir)) # else: # print('Train dataset "{}" is not existed!'.format(valdir)) # exit(-1) # Data loading code print("=> creating data loaders...") data_dir = '..' valdir = os.path.join(data_dir, 'data', args.dataset, 'val') traindir = os.path.join(data_dir, 'data', args.dataset, 'train') train_set = nyu_dataloader.NYUDataset(traindir, type='train') val_set = nyu_dataloader.NYUDataset(valdir, type='val') train_loader = torch.utils.data.DataLoader( train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) val_loader = torch.utils.data.DataLoader( val_set, batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True) return train_loader, val_loader
def get_sets(args, traindir, valdir, testdir): sampler = None if args.dataset == 'kitti': train_set = kitti_dataloader.KITTIDataset(traindir, type='train') val_set = kitti_dataloader.KITTIDataset(valdir, type='val') # sample 3200 pictures for validation from val set weights = [1 for i in range(len(val_set))] print('weights:', len(weights)) sampler = torch.utils.data.WeightedRandomSampler(weights, num_samples=3200) elif args.dataset == 'nyu': train_set = nyu_dataloader.NYUDataset(traindir, type='train') val_set = nyu_dataloader.NYUDataset(valdir, type='val') elif args.dataset == 'panoptic': train_set = panoptic_dataloader.PANOPTICDataset(traindir, type='train') val_set = panoptic_dataloader.PANOPTICDataset(valdir, type='val') test_set = panoptic_dataloader.PANOPTICDataset(testdir, type='test') else: print('no dataset named as ', args.dataset) exit(-1) return sampler, train_set, val_set, test_set
def create_loader(args): root_dir = Path.db_root_dir(args.dataset) # --dataset hacker if args.dataset == 'kitti': train_set = KittiFolder(root_dir, mode='train', size=(385, 513)) test_set = KittiFolder(root_dir, mode='test', size=(385, 513)) train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) test_loader = torch.utils.data.DataLoader(test_set, batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True) return train_loader, test_loader elif args.dataset == 'hacker': # data = 'test.txt' or 'val.txt', transform = None train_set = HackerDataloader(root_dir, type='train') val_set = HackerDataloader(root_dir, type='val') train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) val_loader = torch.utils.data.DataLoader(val_set, batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True) return train_loader, val_loader # raise NotImplementedError else: traindir = os.path.join(root_dir, 'train') if os.path.exists(traindir): print('Train dataset "{}" is existed!'.format(traindir)) else: print('Train dataset "{}" is not existed!'.format(traindir)) exit(-1) valdir = os.path.join(root_dir, 'val') if os.path.exists(traindir): print('Train dataset "{}" is existed!'.format(valdir)) else: print('Train dataset "{}" is not existed!'.format(valdir)) exit(-1) train_set = nyu_dataloader.NYUDataset(traindir, type='train') val_set = nyu_dataloader.NYUDataset(valdir, type='val') train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) val_loader = torch.utils.data.DataLoader(val_set, batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True) return train_loader, val_loader
def create_loader(args): root_dir = Path.db_root_dir(args.dataset) if args.dataset == 'kitti': train_set = KittiFolder(root_dir, mode='train', size=(385, 513)) test_set = KittiFolder(root_dir, mode='test', size=(385, 513)) train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) test_loader = torch.utils.data.DataLoader(test_set, batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True) return train_loader, test_loader elif args.dataset == 'nyu': traindir = os.path.join(root_dir, 'train') if os.path.exists(traindir): print('Train dataset "{}" is existed!'.format(traindir)) else: print('Train dataset "{}" is not existed!'.format(traindir)) exit(-1) valdir = os.path.join(root_dir, 'val') if os.path.exists(traindir): print('Train dataset "{}" is existed!'.format(valdir)) else: print('Train dataset "{}" is not existed!'.format(valdir)) exit(-1) train_set = nyu_dataloader.NYUDataset(traindir, type='train') val_set = nyu_dataloader.NYUDataset(valdir, type='val') train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) val_loader = torch.utils.data.DataLoader(val_set, batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True) return train_loader, val_loader elif args.dataset == 'floorplan3d': traindir = os.path.join(root_dir) if os.path.exists(traindir): print('Train dataset "{}" is existed!'.format(traindir)) else: print('Train dataset "{}" is not existed!'.format(traindir)) exit(-1) valdir = os.path.join(root_dir) if os.path.exists(traindir): print('Valid dataset "{}" is existed!'.format(valdir)) else: print('Valid dataset "{}" is not existed!'.format(valdir)) exit(-1) train_set = floorplan3d_dataloader.Floorplan3DDataset( traindir, dataset_type=args.dataset_type, split='train') val_set = floorplan3d_dataloader.Floorplan3DDataset( valdir, dataset_type=args.dataset_type, split='val') train_loader = torch.utils.data.DataLoader(train_set, batch_size=args.batch_size, shuffle=True, num_workers=args.workers, pin_memory=True) val_loader = torch.utils.data.DataLoader(val_set, batch_size=1, shuffle=False, num_workers=args.workers, pin_memory=True) return train_loader, val_loader else: raise ValueError("unknown dataset")