示例#1
0
    def setup(self, stage=None):
        # MiraBest test samples #
        mb_test = MB_nohybrids(
            path_dict["mb"], train=False, transform=test_transforms["mb"]
        )
        self.test = mb_test

        # Labelled MiraBest samples #
        mb_l = MB_nohybrids(path_dict["mb"], train=True, transform=transforms["mb"])
        if self.fraction != 1:
            mb_l, _ = d_split(mb_l, self.fraction)
        self.train_l = mb_l

        # Cut unlabelled RGZ samples and define unlabelled training set #
        mb_u = RGZ20k(path_dict["rgz"], train=True, transform=transforms["mb"])
        size_cut(config["data"]["cut_threshold"], mb_u)
        mb_cut(mb_u)
        self.train_u = mb_u

        # Combine labelled and unlabelled datasets #
        self.train = torch.utils.data.ConcatDataset([mb_u, mb_l])

        # Flip a number of targets randomly #
        if config["train"]["flip"]:
            mb_l = flip_targets(mb_l, config["train"]["flip"])

        self.save_hparams()
示例#2
0
    def setup(self, stage=None):
        mb_train = MB_nohybrids(self.path,
                                train=True,
                                transform=transforms["mb"])
        mb_test = MB_nohybrids(self.path,
                               train=False,
                               transform=test_transforms["mb"])
        self.test_dataset = mb_test

        if self.fraction != 1:
            mb_train, _ = d_split(mb_train, self.fraction)

        self.train_dataset = mb_train

        mb_l, mb_u = d_split(mb_train, self.split)

        # Flip a number of targets randomly
        if config["train"]["flip"]:
            mb_u = flip_targets(mb_u, config["train"]["flip"])

        self.train_dataset_u = mb_u
        self.train_dataset_l = mb_l

        self.f_u = label_fraction(mb_u, 0)
        self.f_l = label_fraction(mb_l, 0)
示例#3
0
 def prepare_data(self):
     MB_nohybrids(path_dict["mb"], train=True, download=True)
     MB_nohybrids(path_dict["mb"], train=False, download=True)
     RGZ20k(path_dict["rgz"], train=True, download=True)
示例#4
0
 def prepare_data(self):
     MB_nohybrids(self.path, train=True, download=True)
     MB_nohybrids(self.path, train=False, download=True)