# import arch import smallarch as arch from keras.models import Sequential from keras.layers.core import Dense from keras.callbacks import ModelCheckpoint from keras.utils import to_categorical go_board_rows, go_board_cols = 19, 19 num_classes = go_board_rows * go_board_cols num_games = 100 # encoder = OnePlaneEncoder((go_board_rows, go_board_cols)) encoder = SevenPlaneEncoder((go_board_rows, go_board_cols)) processor = DataProcessor(encoder) generator = processor.load_go_data('train', num_games, use_generator=True) X = generator.generate(32, num_classes) print(X) # test_generator =processor.load_go_data('test', num_games,use_generator=True) # from split import Splitter # dir = 'dataset/data' # splitter = Splitter(data_dir=dir) # data = splitter.draw_data('train', num_games) # data_test = splitter.draw_data('test', num_games) # generator = DataGenerator(dir, data) # test_generator = DataGenerator(dir,data_test) # input_shape = (encoder.num_planes, go_board_rows, go_board_cols) # network_layers = arch.layers(input_shape)
from dataprocessor import DataProcessor # pass the encoder # processor = DataProcessor() # features, labels = processor.load_go_data('train', 100) from encoder.oneplane import OnePlaneEncoder encoder = OnePlaneEncoder((19, 19)) processor = DataProcessor(encoder) generator = processor.load_go_data('train', 100, use_generator=True) print(generator.get_num_samples()) generator = generator.generate(batch_size=10) # X, y = generator.next() # implement next ??