def get_tusimple(params): # augmentation flip = Flip() translate = Translate() rotate = Rotate() add_noise = AddGaussianNoise() change_intensity = ChangeIntensity() resize = Resize(rows=256, cols=512) norm_to_1 = NormalizeInstensity() whc_to_cwh = TransposeNumpyArray((2, 0, 1)) train_dataset = DatasetTusimple( root_path=params.train_root_url, json_files=params.train_json_file, transform=transforms.Compose([ flip, translate, rotate, add_noise, change_intensity, resize, norm_to_1, whc_to_cwh ]), ) val_dataset = DatasetTusimple( params.val_root_url, params.val_json_file, transform=transforms.Compose([resize, norm_to_1, whc_to_cwh]), ) return train_dataset, val_dataset
def __init__(self, ): print("usage examples:") print("python -m dataset.culane.test sample") print("python -m dataset.culane.test batch") print("python -m dataset.culane.test batch shuffle=False") flip = Flip(1.0) translate = Translate(1.0) rotate = Rotate(1.0) add_noise = AddGaussianNoise(1.0) change_intensity = ChangeIntensity(1.0) resize = Resize(rows=256, cols=512) hwc_to_chw = TransposeNumpyArray((2, 0, 1)) norm_to_1 = NormalizeInstensity() self.train_dataset = DatasetCollections(transform=transforms.Compose([ flip, translate, rotate, add_noise, change_intensity, resize, norm_to_1, hwc_to_chw ]), )
def __init__(self,): flip = Flip(1.0) translate = Translate(1.0) rotate = Rotate(1.0) add_noise = AddGaussianNoise(1.0) change_intensity = ChangeIntensity(1.0) resize = Resize(rows=256, cols=512) hwc_to_chw = TransposeNumpyArray((2, 0, 1)) norm_to_1 = NormalizeInstensity() json_file = ['label_data_0313.json', 'label_data_0531.json', 'label_data_0601.json'] self.train_dataset = DatasetTusimple(root_path="/media/zzhou/data-tusimple/lane_detection/train_set/", json_files=json_file, transform=transforms.Compose([flip, translate, rotate, add_noise, change_intensity, resize, norm_to_1, hwc_to_chw]),)
def __init__(self,): print("usage examples:") print("python -m dataset.bdd100k.test sample") print("python -m dataset.bdd100k.test batch") print("python -m dataset.bdd100k.test batch shuffle=False") flip = Flip(1.0) translate = Translate(1.0) rotate = Rotate(1.0) add_noise = AddGaussianNoise(1.0) change_intensity = ChangeIntensity(1.0) resize = Resize(rows=256, cols=512) hwc_to_chw = TransposeNumpyArray((2, 0, 1)) norm_to_1 = NormalizeInstensity() self.train_dataset = DatasetBDD100K(root_path="/media/zzhou/data-BDD100K/bdd100k/", json_files="labels/bdd100k_labels_images_train.json", transform=transforms.Compose([flip, translate, rotate, add_noise, change_intensity, resize, norm_to_1, hwc_to_chw]), )