def get_data_from_tfrecords(dataset_name, dataset_split, tfrecords_dir, batch_size, epoch): dataset = segmentation_dataset.get_dataset(dataset_name, dataset_split, tfrecords_dir) if dataset_split == 'train': is_training = True else: is_training = False data_provider = dataset_data_provider.DatasetDataProvider( dataset, num_readers=_NUM_READERS, num_epochs=epoch if is_training else 1, shuffle=is_training) [image, image_mask, image_name] = data_provider.get(['image', 'labels_class', 'image_name']) image.set_shape([1024, 1024, 3]) image_mask.set_shape([1024, 1024, 1]) input_images, input_image_masks, input_image_image_names = tf.train.batch( [image, image_mask, image_name], batch_size=batch_size, num_threads=_NUM_PREPROCESSING_THREADS, capacity=200) batch_queue = slim.prefetch_queue.prefetch_queue( [input_images, input_image_masks, input_image_image_names], capacity=20) input_images, input_image_masks, input_image_image_names = batch_queue.dequeue( ) input_images = normalize_images(input_images) return input_images, input_image_masks, input_image_image_names
def main(unused_argv): tf.logging.set_verbosity(tf.logging.INFO) # Set up deployment (i.e., multi-GPUs and/or multi-replicas). config = model_deploy.DeploymentConfig(num_clones=FLAGS.num_clones, clone_on_cpu=FLAGS.clone_on_cpu, replica_id=FLAGS.task, num_replicas=FLAGS.num_replicas, num_ps_tasks=FLAGS.num_ps_tasks) # Split the batch across GPUs. assert FLAGS.train_batch_size % config.num_clones == 0, ( 'Training batch size not divisble by number of clones (GPUs).') clone_batch_size = FLAGS.train_batch_size // config.num_clones # Get dataset-dependent information. dataset = segmentation_dataset.get_dataset(FLAGS.dataset, FLAGS.train_split, dataset_dir=FLAGS.dataset_dir) tf.gfile.MakeDirs(FLAGS.train_logdir) tf.logging.info('Training on %s set', FLAGS.train_split) with tf.Graph().as_default() as graph: with tf.device(config.inputs_device()): samples = input_generator.get( dataset, FLAGS.train_crop_size, clone_batch_size, min_resize_value=FLAGS.min_resize_value, max_resize_value=FLAGS.max_resize_value, resize_factor=FLAGS.resize_factor, min_scale_factor=FLAGS.min_scale_factor, max_scale_factor=FLAGS.max_scale_factor, scale_factor_step_size=FLAGS.scale_factor_step_size, dataset_split=FLAGS.train_split, is_training=True, model_variant=FLAGS.model_variant, num_readers=8, num_threads=8) inputs_queue = prefetch_queue.prefetch_queue(samples, capacity=128 * config.num_clones) # Create the global step on the device storing the variables. with tf.device(config.variables_device()): global_step = tf.train.get_or_create_global_step() # Define the model and create clones. model_fn = _build_network model_args = (inputs_queue, { common.OUTPUT_TYPE: dataset.num_classes }, dataset.ignore_label) clones = model_deploy.create_clones(config, model_fn, args=model_args) # Gather update_ops from the first clone. These contain, for example, # the updates for the batch_norm variables created by model_fn. first_clone_scope = config.clone_scope(0) update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS, first_clone_scope) # Gather initial summaries. summaries = set(tf.get_collection(tf.GraphKeys.SUMMARIES)) # Add summaries for model variables. for model_var in slim.get_model_variables(): summaries.add(tf.summary.histogram(model_var.op.name, model_var)) # Add summaries for images, labels, semantic predictions if FLAGS.save_summaries_images: summary_image = graph.get_tensor_by_name( ('%s/%s:0' % (first_clone_scope, common.IMAGE)).strip('/')) summaries.add( tf.summary.image('samples/%s' % common.IMAGE, summary_image)) first_clone_label = graph.get_tensor_by_name( ('%s/%s:0' % (first_clone_scope, common.LABEL)).strip('/')) # Scale up summary image pixel values for better visualization. pixel_scaling = max(1, 255 // dataset.num_classes) summary_label = tf.cast(first_clone_label * pixel_scaling, tf.uint8) summaries.add( tf.summary.image('samples/%s' % common.LABEL, summary_label)) first_clone_output = graph.get_tensor_by_name( ('%s/%s:0' % (first_clone_scope, common.OUTPUT_TYPE)).strip('/')) predictions = tf.expand_dims(tf.argmax(first_clone_output, 3), -1) summary_predictions = tf.cast(predictions * pixel_scaling, tf.uint8) summaries.add( tf.summary.image('samples/%s' % common.OUTPUT_TYPE, summary_predictions)) # Add summaries for losses. for loss in tf.get_collection(tf.GraphKeys.LOSSES, first_clone_scope): summaries.add(tf.summary.scalar('losses/%s' % loss.op.name, loss)) # Build the optimizer based on the device specification. with tf.device(config.optimizer_device()): learning_rate = train_utils.get_model_learning_rate( FLAGS.learning_policy, FLAGS.base_learning_rate, FLAGS.learning_rate_decay_step, FLAGS.learning_rate_decay_factor, FLAGS.training_number_of_steps, FLAGS.learning_power, FLAGS.slow_start_step, FLAGS.slow_start_learning_rate) optimizer = tf.train.AdamOptimizer(learning_rate) summaries.add(tf.summary.scalar('learning_rate', learning_rate)) startup_delay_steps = FLAGS.task * FLAGS.startup_delay_steps for variable in slim.get_model_variables(): summaries.add(tf.summary.histogram(variable.op.name, variable)) with tf.device(config.variables_device()): total_loss, grads_and_vars = model_deploy.optimize_clones( clones, optimizer) total_loss = tf.check_numerics(total_loss, 'Loss is inf or nan.') summaries.add(tf.summary.scalar('total_loss', total_loss)) # Modify the gradients for biases and last layer variables. last_layers = model.get_extra_layer_scopes( FLAGS.last_layers_contain_logits_only) grad_mult = train_utils.get_model_gradient_multipliers( last_layers, FLAGS.last_layer_gradient_multiplier) if grad_mult: grads_and_vars = slim.learning.multiply_gradients( grads_and_vars, grad_mult) # Create gradient update op. grad_updates = optimizer.apply_gradients(grads_and_vars, global_step=global_step) update_ops.append(grad_updates) update_op = tf.group(*update_ops) with tf.control_dependencies([update_op]): train_tensor = tf.identity(total_loss, name='train_op') # Add the summaries from the first clone. These contain the summaries # created by model_fn and either optimize_clones() or _gather_clone_loss(). summaries |= set( tf.get_collection(tf.GraphKeys.SUMMARIES, first_clone_scope)) # Merge all summaries together. summary_op = tf.summary.merge(list(summaries)) # Soft placement allows placing on CPU ops without GPU implementation. session_config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False) if FLAGS.per_process_gpu_memory_fraction is not None: session_config.gpu_options.per_process_gpu_memory_fraction = FLAGS.per_process_gpu_memory_fraction # Start the training. slim.learning.train(train_tensor, logdir=FLAGS.train_logdir, log_every_n_steps=FLAGS.log_steps, master=FLAGS.master, number_of_steps=FLAGS.training_number_of_steps, is_chief=(FLAGS.task == 0), session_config=session_config, startup_delay_steps=startup_delay_steps, init_fn=train_utils.get_model_init_fn( FLAGS.train_logdir, FLAGS.tf_initial_checkpoint, FLAGS.initialize_last_layer, last_layers, ignore_missing_vars=True), summary_op=summary_op, save_summaries_secs=FLAGS.save_summaries_secs, save_interval_secs=FLAGS.save_interval_secs)
def main(unused_argv): tf.logging.set_verbosity(tf.logging.INFO) # Get dataset-dependent information. dataset = segmentation_dataset.get_dataset(FLAGS.dataset, FLAGS.vis_split, dataset_dir=FLAGS.dataset_dir) train_id_to_eval_id = None if dataset.name == segmentation_dataset.get_cityscapes_dataset_name(): tf.logging.info('Cityscapes requires converting train_id to eval_id.') train_id_to_eval_id = _CITYSCAPES_TRAIN_ID_TO_EVAL_ID # Prepare for visualization. tf.gfile.MakeDirs(FLAGS.vis_logdir) save_dir = os.path.join(FLAGS.vis_logdir, _SEMANTIC_PREDICTION_SAVE_FOLDER) tf.gfile.MakeDirs(save_dir) raw_save_dir = os.path.join(FLAGS.vis_logdir, _RAW_SEMANTIC_PREDICTION_SAVE_FOLDER) tf.gfile.MakeDirs(raw_save_dir) tf.logging.info('Visualizing on %s set', FLAGS.vis_split) g = tf.Graph() with g.as_default(): samples = input_generator.get(dataset, FLAGS.vis_crop_size, FLAGS.vis_batch_size, min_resize_value=FLAGS.min_resize_value, max_resize_value=FLAGS.max_resize_value, resize_factor=FLAGS.resize_factor, dataset_split=FLAGS.vis_split, is_training=False, model_variant=FLAGS.model_variant) model_options = common.ModelOptions( outputs_to_num_classes={common.OUTPUT_TYPE: dataset.num_classes}, crop_size=FLAGS.vis_crop_size, atrous_rates=FLAGS.atrous_rates, output_stride=FLAGS.output_stride) if tuple(FLAGS.eval_scales) == (1.0, ): tf.logging.info('Performing single-scale test.') predictions = model.predict_labels( samples[common.IMAGE], model_options=model_options, image_pyramid=FLAGS.image_pyramid) else: tf.logging.info('Performing multi-scale test.') predictions = model.predict_labels_multi_scale( samples[common.IMAGE], model_options=model_options, eval_scales=FLAGS.eval_scales, add_flipped_images=FLAGS.add_flipped_images) predictions = predictions[common.OUTPUT_TYPE] if FLAGS.min_resize_value and FLAGS.max_resize_value: # Only support batch_size = 1, since we assume the dimensions of original # image after tf.squeeze is [height, width, 3]. assert FLAGS.vis_batch_size == 1 # Reverse the resizing and padding operations performed in preprocessing. # First, we slice the valid regions (i.e., remove padded region) and then # we reisze the predictions back. original_image = tf.squeeze(samples[common.ORIGINAL_IMAGE]) original_image_shape = tf.shape(original_image) predictions = tf.slice( predictions, [0, 0, 0], [1, original_image_shape[0], original_image_shape[1]]) resized_shape = tf.cast([ tf.squeeze(samples[common.HEIGHT]), tf.squeeze(samples[common.WIDTH]) ], tf.int32) predictions = tf.squeeze( tf.image.resize_images( tf.expand_dims(predictions, 3), resized_shape, method=tf.image.ResizeMethod.NEAREST_NEIGHBOR, align_corners=True), 3) labels = samples[common.LABEL] labels = tf.where(tf.equal(labels, dataset.ignore_label), tf.ones_like(labels) * 20, labels) tf.train.get_or_create_global_step() saver = tf.train.Saver(slim.get_variables_to_restore()) sv = tf.train.Supervisor(graph=g, logdir=FLAGS.vis_logdir, init_op=tf.global_variables_initializer(), summary_op=None, summary_writer=None, global_step=None, saver=saver) num_batches = int( math.ceil(dataset.num_samples / float(FLAGS.vis_batch_size))) last_checkpoint = None # Loop to visualize the results when new checkpoint is created. num_iters = 0 while (FLAGS.max_number_of_iterations <= 0 or num_iters < FLAGS.max_number_of_iterations): num_iters += 1 last_checkpoint = slim.evaluation.wait_for_new_checkpoint( FLAGS.checkpoint_dir, last_checkpoint) start = time.time() tf.logging.info('Starting visualization at ' + time.strftime('%Y-%m-%d-%H:%M:%S', time.gmtime())) tf.logging.info('Visualizing with model %s', last_checkpoint) with sv.managed_session(FLAGS.master, start_standard_services=False) as sess: sv.start_queue_runners(sess) sv.saver.restore(sess, last_checkpoint) image_id_offset = 0 for batch in range(num_batches): tf.logging.info('Visualizing batch %d / %d', batch + 1, num_batches) _process_batch( sess=sess, original_images=samples[common.ORIGINAL_IMAGE], semantic_predictions=predictions, image_names=samples[common.IMAGE_NAME], image_heights=samples[common.HEIGHT], image_widths=samples[common.WIDTH], labels=labels, image_id_offset=image_id_offset, save_dir=save_dir, raw_save_dir=raw_save_dir, train_id_to_eval_id=train_id_to_eval_id) image_id_offset += FLAGS.vis_batch_size tf.logging.info('Finished visualization at ' + time.strftime('%Y-%m-%d-%H:%M:%S', time.gmtime())) time_to_next_eval = start + FLAGS.eval_interval_secs - time.time() if time_to_next_eval > 0: time.sleep(time_to_next_eval)
def main(unused_argv): tf.logging.set_verbosity(tf.logging.INFO) # Get dataset-dependent information. dataset = segmentation_dataset.get_dataset(FLAGS.dataset, FLAGS.eval_split, dataset_dir=FLAGS.dataset_dir) tf.gfile.MakeDirs(FLAGS.eval_logdir) tf.logging.info('Evaluating on %s set', FLAGS.eval_split) with tf.Graph().as_default(): samples = input_generator.get(dataset, FLAGS.eval_crop_size, FLAGS.eval_batch_size, min_resize_value=FLAGS.min_resize_value, max_resize_value=FLAGS.max_resize_value, resize_factor=FLAGS.resize_factor, dataset_split=FLAGS.eval_split, is_training=False, model_variant=FLAGS.model_variant) model_options = common.ModelOptions( outputs_to_num_classes={common.OUTPUT_TYPE: dataset.num_classes}, crop_size=FLAGS.eval_crop_size, atrous_rates=FLAGS.atrous_rates, output_stride=FLAGS.output_stride) if tuple(FLAGS.eval_scales) == (1.0, ): tf.logging.info('Performing single-scale test.') predictions = model.predict_labels( samples[common.IMAGE], model_options, image_pyramid=FLAGS.image_pyramid) else: tf.logging.info('Performing multi-scale test.') predictions = model.predict_labels_multi_scale( samples[common.IMAGE], model_options=model_options, eval_scales=FLAGS.eval_scales, add_flipped_images=FLAGS.add_flipped_images) predictions = predictions[common.OUTPUT_TYPE] predictions = tf.reshape(predictions, shape=[-1]) labels = tf.reshape(samples[common.LABEL], shape=[-1]) weights = tf.cast(tf.not_equal(labels, dataset.ignore_label), tf.float32) # Set ignore_label regions to label 0, because metrics.mean_iou requires # range of labels = [0, dataset.num_classes). Note the ignore_label regions # are not evaluated since the corresponding regions contain weights = 0. labels = tf.where(tf.equal(labels, dataset.ignore_label), tf.zeros_like(labels), labels) predictions_tag = 'miou' for eval_scale in FLAGS.eval_scales: predictions_tag += '_' + str(eval_scale) if FLAGS.add_flipped_images: predictions_tag += '_flipped' # Define the evaluation metric. metric_map = {} metric_map[predictions_tag] = tf.metrics.mean_iou(predictions, labels, dataset.num_classes, weights=weights) metrics_to_values, metrics_to_updates = ( tf.contrib.metrics.aggregate_metric_map(metric_map)) for metric_name, metric_value in six.iteritems(metrics_to_values): slim.summaries.add_scalar_summary(metric_value, metric_name, print_summary=True) num_batches = int( math.ceil(dataset.num_samples / float(FLAGS.eval_batch_size))) tf.logging.info('Eval num images %d', dataset.num_samples) tf.logging.info('Eval batch size %d and num batch %d', FLAGS.eval_batch_size, num_batches) num_eval_iters = None if FLAGS.max_number_of_evaluations > 0: num_eval_iters = FLAGS.max_number_of_evaluations # Soft placement allows placing on CPU ops without GPU implementation. session_config = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False) session_config.gpu_options.allow_growth = True slim.evaluation.evaluation_loop( session_config=session_config, master=FLAGS.master, checkpoint_dir=FLAGS.checkpoint_dir, logdir=FLAGS.eval_logdir, num_evals=num_batches, eval_op=list(metrics_to_updates.values()), max_number_of_evaluations=num_eval_iters, eval_interval_secs=FLAGS.eval_interval_secs)