示例#1
0
def main() -> None:
    (x_train, t_train), (x_test, t_test) = sequence.load_data('addition.txt')
    x_train, x_test = x_train[:, ::-1], x_test[:, ::-1]

    char_to_id, id_to_char = sequence.get_vocab()

    vocab_size = len(char_to_id)
    wordvec_size = 16
    hidden_size = 128
    batch_size = 128
    max_epoch = 25
    max_grad = 5.0

    model = PeekySeq2seq(vocab_size, wordvec_size, hidden_size)
    optimizer = Adam()
    trainer = Trainer(model, optimizer)

    acc_list = []
    for epoch in range(1, max_epoch+1):
        trainer.fit(x_train, t_train, max_epoch=1, batch_size=batch_size, max_grad=max_grad)

        correct_num = 0
        for i in range(len(x_test)):
            question, correct = x_test[[i]], t_test[[i]]
            verbose = i < 10
            correct_num += eval_seq2seq(model, question, correct, id_to_char, verbose)
        
        acc = float(correct_num) / len(x_test)
        acc_list.append(acc)
        print(f'val acc {acc*100}%')
    print('DONE')
def main():

    (x_train, t_train), (x_test, t_test) = load_data('addition.txt', seed=1984)
    char_to_id, id_to_char = get_vocab()

    print(x_train.shape, t_train.shape)
    print(x_test.shape, t_test.shape)

    print(''.join([id_to_char[c] for c in x_train[0]]))
    print(''.join([id_to_char[c] for c in t_train[0]]))
示例#3
0
def main():

    # データセットの読み込み
    (x_train, t_train), (x_test, t_test) = sequence.load_data('addition.txt')
    char_to_id, id_to_char = sequence.get_vocab()

    # 入力列を逆順にするとSeq2Se2の精度が上がるらしいが。。。クソ理論
    is_reverse = True
    if is_reverse:
        x_train, x_test = x_train[:, ::-1], x_test[:, ::-1]

    # ハイパーパラメータの設定
    vocab_size = len(char_to_id)
    wordvec_size = 16
    hidden_size = 128
    batch_size = 128
    max_epoch = 25
    max_grad = 5.0

    # モデル/オプティマイザ/トレーナーの生成
    # model = Seq2seq(vocab_size, wordvec_size, hidden_size)
    model = PeekySeq2seq(vocab_size, wordvec_size, hidden_size)
    optimizer = Adam()
    trainer = Trainer(model, optimizer)

    acc_list = []
    for epoch in range(max_epoch):
        trainer.fit(x_train,
                    t_train,
                    max_epoch=1,
                    batch_size=batch_size,
                    max_grad=max_grad)

        correct_num = 0
        for i in range(len(x_test)):
            question, correct = x_test[[i]], t_test[[i]]
            verbose = i < 10
            correct_num += eval_seq2seq(model, question, correct, id_to_char,
                                        verbose)

        acc = float(correct_num) / len(x_test)
        acc_list.append(acc)
        print(f'val acc {acc * 100}')
示例#4
0
文件: train.py 项目: MATOBAD/NLP
def main():
    # データの読み込み
    (x_train, t_train), (x_test, t_test) = sequence.load_data('date.txt')
    char_to_id, id_to_char = sequence.get_vocab()

    # 入力文を反転
    x_train, x_test = x_train[:, ::-1], x_test[:, ::-1]

    # ハイパーパラメータの設定
    vocab_size = len(char_to_id)
    wordvec_size = 16
    hidden_size = 256
    batch_size = 128
    max_epoch = 10
    max_grad = 5.0

    model = AttentionSeq2seq(vocab_size, wordvec_size, hidden_size)
    optimizer = Adam()
    trainer = Trainer(model, optimizer)

    acc_list = []
    for epoch in range(max_epoch):
        trainer.fit(x_train,
                    t_train,
                    max_epoch=1,
                    batch_size=batch_size,
                    max_grad=max_grad)

        correct_num = 0
        for i in range(len(x_test)):
            question, correct = x_test[[i]], t_test[[i]]
            verbose = i < 10
            correct_num += eval_seq2seq(model,
                                        question,
                                        correct,
                                        id_to_char,
                                        verbose,
                                        is_reverse=True)

        acc = float(correct_num) / len(x_test)
        acc_list.append(acc)
        print('val acc %.3f%%' % (acc * 100))
示例#5
0
def main() -> None:
    (x_train, t_train), (x_test, t_test) = sequence.load_data('data.txt')
    char_to_id, id_to_char = sequence.get_vocab()

    x_train, x_test = x_train[:, ::-1], x_test[:, ::-1]

    vocab_size = len(char_to_id)
    wordvec_size = 16
    hidden_size = 256
    batch_size = 128
    max_epoch = 10
    max_grad = 5.0

    model = AttentionSeq2seq(vocab_size, wordvec_size, hidden_size)
    optimizer = Adam()
    trainer = Trainer(model, optimizer)

    acc_list = []
    for epoch in range(max_epoch):
        trainer.fit(x_train,
                    t_train,
                    max_epoch=1,
                    batch_size=batch_size,
                    max_grad=max_grad)

        correct_num = 0
        for i in range(len(x_test)):
            question, correct = x_test[[i]], t_test[[i]]
            verbose = i < 10
            correct_num += eval_seq2seq(model,
                                        question,
                                        correct,
                                        id_to_char,
                                        verbose,
                                        is_reverse=True)

        acc = float(correct_num) / len(x_test)
        acc_list.append(acc)
        print(f"val acc {acc*100}%")

    model.save_params()
    print("DONE")
示例#6
0

class AttentionSeq2seq(Seq2seq):
    def __init__(self, vocab_size, wordvec_size, hidden_size):
        args = vocab_size, wordvec_size, hidden_size
        self.encoder = AttentionEncoder(*args)
        self.decoder = AttentionDecoder(*args)
        self.softmax = TimeSoftmaxWithLoss()

        self.params = self.encoder.params + self.decoder.params
        self.grads = self.encoder.grads + self.decoder.grads


if __name__ == "__main__":
    (x_train, t_train), (x_test, t_test) = sequence.load_data('date.txt')
    char_to_id, id_to_char = sequence.get_vocab()

    # 入力文を反転
    x_train, x_test = x_train[:, ::-1], x_test[:, ::-1]

    # ハイパーパラメータの設定
    vocab_size = len(char_to_id)
    wordvec_size = 16
    hidden_size = 256
    batch_size = 128
    max_epoch = 4
    max_grad = 5.0

    model = AttentionSeq2seq(vocab_size, wordvec_size, hidden_size)

    optimizer = Adam()