def __init__(self, config: dict, enable_tune: bool = False, **kwargs): super().__init__(config=config, enable_tune=enable_tune, **kwargs) exp_params = config['exp_params'] input_shape = get_example_shape(exp_params['data']) localizer = create_model(**config['model_params'], input_shape=input_shape) self.localizer = localizer
def vae1d(config: dict, run_args: dict) -> VAEExperiment: exp_params = config['exp_params'] c, l = get_example_shape(exp_params['data']) model = create_model(**config['model_params'], num_samples=l, channels=c) return VAEExperiment(model, params=exp_params, enable_tune=run_args.get('enable_tune', False))
def vae3d(config: dict, run_args: dict) -> VAEExperiment: exp_params = config['exp_params'] c, d, h, w = get_example_shape(exp_params['data']) model = create_model(**config['model_params'], width=w, height=h, depth=d, channels=c) return VAEExperiment(model, params=exp_params)
def __init__(self, config: dict, enable_tune: bool = False, **kwargs): super().__init__(config=config, enable_tune=enable_tune, **kwargs) input_shape = get_example_shape(config['exp_params']['data']) self.constraint = create_model(**config['constraint_params'], input_shape=input_shape) self.constraint.requires_grad = False self.constraint.eval() self.model = create_model(**config['model_params'], input_shape=input_shape)
def classification_embed2d(config: dict, run_args: dict): base_experiment, _ = experiment_main( load_config(config['base_experiment']), run_args) encoder = base_experiment.model.get_encoder() encoder.requires_grad = False exp_params = config['exp_params'] c, h, w = get_example_shape(exp_params['data']) model = create_model(**config['model_params'], width=w, height=h, channels=c, encoder=encoder) return ClassificationExperiment(model, params=exp_params)
def __init__(self, config: dict, enable_tune: bool = False, **kwargs) -> None: super(VAEExperiment, self).__init__(config=config, enable_tune=enable_tune, **kwargs) params = config['exp_params'] c, h, w = get_example_shape(params['data']) self.model = create_model(**config['model_params'], width=w, height=h, channels=c, enable_fid='fid_weight' in params, progressive_growing=len( params['progressive_growing']) if 'progressive_growing' in params else 0)
def __init__(self, config: dict, enable_tune: bool = False, **kwargs): super().__init__(config=config, enable_tune=enable_tune, **kwargs) self.classifier = create_model(**config['model_params'], input_shape=get_example_shape( config['exp_params']['data']))