示例#1
0
def synthesis(prepare_res, params):
    dw_passed, _ = prepare_res
    # Using set_slice on a dataset that was written in analysis is not
    # actually supported, but since it currently works (as long as that
    # particular slice wasn't written in analysis) let's test it.
    dw_passed.set_slice(0)
    dw_passed.write(**{k: v[0] for k, v in test_data.data.items()})
    dw_synthesis_split = DatasetWriter(name="synthesis_split", hashlabel="a")
    dw_synthesis_split.add("a", "int32")
    dw_synthesis_split.add("b", "unicode")
    dw_synthesis_split.get_split_write()(1, "a")
    dw_synthesis_split.get_split_write_list()([2, "b"])
    dw_synthesis_split.get_split_write_dict()({"a": 3, "b": "c"})
    dw_synthesis_manual = DatasetWriter(name="synthesis_manual",
                                        columns={"sliceno": "int32"})
    dw_nonetest = DatasetWriter(name="nonetest",
                                columns={t: t
                                         for t in test_data.data})
    for sliceno in range(params.slices):
        dw_synthesis_manual.set_slice(sliceno)
        dw_synthesis_manual.write(sliceno)
        dw_nonetest.set_slice(sliceno)
        dw_nonetest.write(
            **{
                k: v[0] if k in test_data.not_none_capable else None
                for k, v in test_data.data.items()
            })
示例#2
0
def analysis(sliceno, prepare_res):
    dw_default = DatasetWriter()
    dw_named = DatasetWriter(name="named")
    dw_passed, num = prepare_res
    dw_default.write(a=sliceno, b="a")
    dw_default.write_list([num, str(sliceno)])
    dw_named.write(True, date(1536, 12, min(sliceno + 1, 31)))
    dw_named.write_dict({"c": False, "d": date(2236, 5, min(sliceno + 1, 31))})
    # slice 0 is written in synthesis
    if 0 < sliceno < test_data.value_cnt:
        dw_passed.write_dict(
            {k: v[sliceno]
             for k, v in test_data.data.items()})
def _verify(name, types, data, coltype, want, default, want_fail, kw):
    if callable(want):
        check = want
    else:

        def check(got, fromstr, filtered=False):
            want1 = want if isinstance(want, list) else want[typ]
            if filtered:
                want1 = want1[::2]
            assert got == want1, 'Expected %r, got %r from %s.' % (
                want1,
                got,
                fromstr,
            )

    dw = DatasetWriter(name=name, columns={'data': coltype, 'extra': 'bytes'})
    dw.set_slice(0)
    for ix, v in enumerate(data):
        dw.write(v, b'1' if ix % 2 == 0 else b'skip')
    for sliceno in range(1, g.SLICES):
        dw.set_slice(sliceno)
    bytes_ds = dw.finish()
    for typ in types:
        opts = dict(column2type=dict(data=typ))
        opts.update(kw)
        if default is not no_default:
            opts['defaults'] = {'data': default}
        try:
            jid = subjobs.build('dataset_type',
                                datasets=dict(source=bytes_ds),
                                options=opts)
        except JobError:
            if want_fail:
                continue
            raise Exception('Typing %r as %s failed.' % (
                bytes_ds,
                typ,
            ))
        assert not want_fail, "Typing %r as %s should have failed, but didn't (%s)." % (
            bytes_ds, typ, jid)
        typed_ds = Dataset(jid)
        got = list(typed_ds.iterate(0, 'data'))
        check(got, '%s (typed as %s from %r)' % (
            typed_ds,
            typ,
            bytes_ds,
        ))
        if 'filter_bad' not in opts and not callable(want):
            opts['filter_bad'] = True
            opts['column2type']['extra'] = 'int32_10'
            jid = subjobs.build('dataset_type',
                                datasets=dict(source=bytes_ds),
                                options=opts)
            typed_ds = Dataset(jid)
            got = list(typed_ds.iterate(0, 'data'))
            check(
                got,
                '%s (typed as %s from %r with every other line skipped from filter_bad)'
                % (
                    typed_ds,
                    typ,
                    bytes_ds,
                ), True)
        used_type(typ)
def test_filter_bad_across_types():
    columns = {
        'bytes': 'bytes',
        'float64': 'bytes',
        'int32_10': 'ascii',
        'json': 'unicode',
        'number:int': 'unicode',
        'unicode:utf-8': 'bytes',
    }
    # all_good, *values
    # Make sure all those types (except bytes) can filter other lines,
    # and be filtered by other lines. And that several filtering values
    # is not a problem (line 11).
    data = [
        (
            True,
            b'first',
            b'1.1',
            '1',
            '"a"',
            '001',
            b'ett',
        ),
        (
            True,
            b'second',
            b'2.2',
            '2',
            '"b"',
            '02',
            b'tv\xc3\xa5',
        ),
        (
            True,
            b'third',
            b'3.3',
            '3',
            '["c"]',
            '3.0',
            b'tre',
        ),
        (
            False,
            b'fourth',
            b'4.4',
            '4',
            '"d"',
            '4.4',
            b'fyra',
        ),  # number:int bad
        (
            False,
            b'fifth',
            b'5.5',
            '-',
            '"e"',
            '5',
            b'fem',
        ),  # int32_10 bad
        (
            False,
            b'sixth',
            b'6.b',
            '6',
            '"f"',
            '6',
            b'sex',
        ),  # float64 bad
        [
            False,
            b'seventh',
            b'7.7',
            '7',
            '{"g"}',
            '7',
            b'sju',
        ],  # json bad
        (
            False,
            b'eigth',
            b'8.8',
            '8',
            '"h"',
            '8',
            b'\xa5\xc3tta',
        ),  # unicode:utf-8 bad
        (
            True,
            b'ninth',
            b'9.9',
            '9',
            '"i"',
            '9',
            b'nio',
        ),
        (
            True,
            b'tenth',
            b'10',
            '10',
            '"j"',
            '10',
            b'tio',
        ),
        (
            False,
            b'eleventh',
            b'11a',
            '1-',
            '"k",',
            '1,',
            b'elva',
        ),  # float64, int32_10 and number:int bad
        (
            True,
            b'twelfth',
            b'12',
            '12',
            '"l"',
            '12',
            b'tolv',
        ),
    ]
    dw = DatasetWriter(name="filter bad across types", columns=columns)
    dw.set_slice(0)
    want = []

    def add_want(v):
        want.append((
            int(v[3]),
            v[1],
            json.loads(v[4]),
            v[6].decode('utf-8'),
        ))

    for v in data:
        if v[0]:
            add_want(v)
        dw.write(*v[1:])
    for sliceno in range(1, g.SLICES):
        dw.set_slice(sliceno)
    source_ds = dw.finish()
    # Once with just filter_bad, once with some defaults too.
    defaults = {}
    for _ in range(2):
        jid = subjobs.build(
            'dataset_type',
            datasets=dict(source=source_ds),
            options=dict(column2type={t: t
                                      for t in columns},
                         filter_bad=True,
                         defaults=defaults),
        )
        typed_ds = Dataset(jid)
        got = list(
            typed_ds.iterate(0,
                             ['int32_10', 'bytes', 'json', 'unicode:utf-8']))
        assert got == want, "Exptected %r, got %r from %s (from %r%s)" % (
            want, got, typed_ds, source_ds,
            ' with defaults' if defaults else '')
        # make more lines "ok" for the second lap
        defaults = {'number:int': '0', 'float64': '0', 'json': '"replacement"'}
        add_want(data[3])
        add_want(data[5])
        data[6][4] = '"replacement"'
        add_want(data[6])
        want.sort()  # adding them out of order, int32_10 sorts correctly.