示例#1
0
    def train(self):
        self.model.train()
        best_acc = 0.0
        save_model_prefix = os.path.join(self.model_path,
                                         self.config.model_prefix)
        for epoch in range(self.num_epochs):
            self.logger.info("Epoch %d/%d" % (epoch + 1, self.num_epochs))
            start_time = time.time()
            for batch in self.train_data_loader:
                output = self.model(MyDataset.to(batch, self.config.device))
                self.model.zero_grad()
                loss = self._calc_loss(output, batch)
                loss.backward()
                self.optimizer.step()
                self.writer.add_scalar("scalar/loss", loss.cpu().item(), epoch)

            time_diff = time.time() - start_time
            self.logger.info("epoch %d time consumed: %dm%ds." %
                             (epoch + 1, time_diff // 60, time_diff % 60))
            # evaluate model
            cur_acc = self.eval_dev(self.dev_data_loader)
            self.model.train()
            self.logger.info("Current accuracy: %.3f" % cur_acc)
            self.writer.add_scalar("scalar/accuracy", cur_acc)
            if cur_acc > best_acc:  # and epoch > 10:
                save_filename = save_model_prefix + str(cur_acc)
                torch.save(self.model.state_dict(), save_filename)
                best_acc = cur_acc
示例#2
0
 def eval_dev(self, dev_data_loader):
     self.model.eval()
     correct_count = 0
     total_count = 0
     for batch in dev_data_loader:
         output = self.model(MyDataset.to(batch, self.config.device))
         pred = torch.argmax(output, 1)
         correct_count += (pred.cpu().detach().numpy() ==
                           batch['answer_index'].numpy()).sum()
         total_count += len(batch['query_length'])
     return float(correct_count) / total_count