def cluster(sample_embedding): clustered_samples = cluster_embedding(sample_embedding) return clustered_samples
def cluster_datasets_rsa(args) -> None: # Get executor if args.processor == "joblib": set_loky_pickler("pickle") executor = ExecutorJoblib(int(args.n_procs)) elif args.processor == "map": executor = ExecutorMap() executor_map = ExecutorMap() print("defined executor") # Get Dataset print("Loading datasets") dataset = MultiCrystalDataset.mcd_from_pandda_input_dir( p.Path(args.data_dirs)) # dataset.datasets = {key: value for key, value in list(dataset.datasets.items())[:150]} print("got datasets") print("\tBefore tuncation on res there are {} datasets".format( len(dataset.datasets))) dataset = truncate_dataset_on_resolution(dataset) print("\tAfter truncationt on res here are {} datasets".format( len(dataset.datasets))) # Select lowest res dataset min_res = get_min_res(dataset) # Load xmaps print("Getting exmpas") xmaps = mapdict( Loader(min_res=min_res), dataset.datasets, executor, ) # Align models to ref reference_dtag = list(dataset.datasets.keys())[0] reference_model = dataset.datasets[reference_dtag].structure.structure # Get model alignmetns aligners = {} for dtag, d in dataset.datasets.items(): # print("\tAligning {} to {}".format(dtag, reference_dtag)) aligners[dtag] = StructureAligner( reference_model, d.structure.structure, ) alignments = mapdict( wrap_call, aligners, executor_map, ) # Sample Xmaps uniformly # grid_params = [50,50,50] reference_cell = xmaps[reference_dtag].xmap.cell grid_params = ( int(reference_cell.a), int(reference_cell.b), int(reference_cell.c), ) print("Grid params are: {}".format(grid_params)) samplers = {} for dtag, xmap in xmaps.items(): rtop = alignments[dtag] mobile_to_ref_translation = rtop[1] mobile_to_ref_rotation = rtop[0] # print("\tDataset {} translation is: {}".format(dtag, mobile_to_ref_translation)) # print("\tDataset {} rotation is: {}".format(dtag, mobile_to_ref_rotation.flatten())) samplers[dtag] = Sampler( xmap, grid_params, mobile_to_ref_translation, mobile_to_ref_rotation, ) nxmaps = mapdict( wrap_call, samplers, executor, ) # Convert nxmaps to np print("Converting xmaps to np") xmaps_np = mapdict( nxmap_to_numpy, nxmaps, executor, ) # Rescale rescaler = Rescaler() xmaps_np = mapdict( rescaler, xmaps_np, executor, ) postcondtion_scaling(xmaps_np) # Align xmaps print("aligning xmaps") static_image = xmaps_np[list(xmaps_np.keys())[0]] aligners = {} for dtag, xmap_np in xmaps_np.items(): aligners[dtag] = ImageAligner( static_image, xmap_np, ) xmaps_aligned = mapdict( wrap_call, aligners, executor, ) # Embed the xmaps into a latent space print("Dimension reducing") xmap_embedding = embed_xmaps(xmaps_np.values()) # Cluster the embedding print("clustering") clustered_xmaps = cluster_embedding(xmap_embedding) # Make dataframe with cluster and position print("getting cluster dataframe") cluster_df = get_cluster_df( xmaps_np, xmap_embedding, clustered_xmaps, ) cluster_df_summary(cluster_df) # Get clusters print("associating xmaps with clusters") map_clusters = get_map_clusters( cluster_df, xmaps_aligned, ) # Make mean maps executor_seriel = ExecutorMap() mean_maps_np = mapdict( lambda x: make_mean_map(x), map_clusters, executor_seriel, ) # Output the mean maps print("Outputting mean maps") template_map = xmaps[list(xmaps.keys())[0]] # print(template_map) # cell = dataset.datasets[list(dataset.datasets.keys())[0]].reflections.hkl_info.cell cell = clipper_python.Cell( clipper_python.Cell_descr( grid_params[0], grid_params[1], grid_params[2], np.pi / 2, np.pi / 2, np.pi / 2, )) for cluster_num, mean_map_np in mean_maps_np.items(): output_mean_nxmap( mean_map_np, cell, p.Path(args.out_dir) / "{}.ccp4".format(cluster_num), grid_params, ) # output_mean_nxmap(mean_map_np_list, # cell, # p.Path(args.out_dir) / "{}.ccp4".format(cluster_num), # ) # Ouptut the csv print("Outputting csv") output_labeled_embedding_csv( cluster_df, str(p.Path(args.out_dir) / "labelled_embedding.csv"), ) # Output the graph # output_cluster_graph(cluster_df, str(out_dir / "output_graph.png")) return cluster_df
def cluster_datasets(args) -> None: # Get executor if args.processor == "joblib": set_loky_pickler("pickle") executor = ExecutorJoblib(20) elif args.processor == "map": executor = ExecutorMap() executor_map = ExecutorMap() print("defined executor") # Get Dataset print("Loading datasets") dataset = MultiCrystalDataset.mcd_from_pandda_input_dir( p.Path(args.data_dirs)) # dataset.datasets = {key: value for key, value in list(dataset.datasets.items())[:150]} print("got datasets") print("\tBefore tuncation on res there are {} datasets".format( len(dataset.datasets))) dataset = truncate_dataset_on_resolution(dataset) print("\tAfter truncationt on res here are {} datasets".format( len(dataset.datasets))) # # # unit_cell_clustering_labels = cluster_unit_cell_params(dataset) # print("\tBefore tuncation there are {} datasets".format(len(dataset.datasets))) # dataset = truncate_dataset_on_clustering(dataset, unit_cell_clustering_labels) # print("\tAfter truncationt here are {} datasets".format(len(dataset.datasets))) # Select lowest res dataset min_res = get_min_res(dataset) # dataset = truncate_on_res(dataset) # d = dataset.datasets[list(dataset.datasets.keys())[0]] # xmap = MCDXMap.xmap_from_dataset(d, # resolution=Resolution(min_res), # ) # print(xmap) # xmap_np = xmap_to_numpy_crystalographic_axis(xmap) # print(np.std(xmap_np)) # # with open("test.pkl", "wb") as f: # pickle.dump(xmap, f) # # with open("test.pkl", "rb") as f: # xmap_reloaded = pickle.load(f) # # # xmap_reloaded_np = xmap_to_numpy_crystalographic_axis(xmap_reloaded) # print(np.std(xmap_reloaded_np)) # # exit() # Load xmaps print("Getting exmpas") # xmaps = mapdict(lambda d: MCDXMap.xmap_from_dataset(d, # resolution=Resolution(min_res), # ), # dataset.datasets, # executor, # ) reference_dataset = dataset.datasets[list(dataset.datasets.keys())[0]] # print(dir(reference_dataset)) reference_grid = clipper_python.Grid_sampling( reference_dataset.reflections.hkl_info.spacegroup, reference_dataset.reflections.hkl_info.cell, Resolution(min_res), ) grid_params = ( reference_grid.nu, reference_grid.nv, reference_grid.nw, ) xmaps = mapdict( Loader( min_res=None, grid_params=grid_params, ), dataset.datasets, executor, ) # print("Xmap std is: {}".format(np.std(xmaps[list(xmaps.keys())[0]].xmap.export_numpy()))) # Convert xmaps to np print("Converting xmaps to np") # xmaps_np = mapdict(xmap_to_numpy_crystalographic_axis, # xmaps, # executor, # ) # postcondition_alignment(xmaps_np) # xmaps_np = mapdict(interpolate_uniform_grid, # xmaps, # executor, # ) # print("\tXmap representative shape is: {}".format(xmaps_np[list(xmaps_np.keys())[0]].shape)) static_structure = dataset.datasets[list( dataset.datasets.keys())[0]].structure.structure # print("Got static structure") aligners = {} for dtag, xmap in xmaps.items(): aligners[dtag] = StructureAligner( static_structure, dataset.datasets[dtag].structure.structure, xmap, ) xmaps_aligned = mapdict( wrap_call, aligners, executor, ) # Rescale rescaler = Rescaler() xmaps_np = mapdict( rescaler, xmaps_aligned, executor, ) postcondtion_scaling(xmaps_np) # Align xmaps print("aligning xmaps") # static_map = xmaps_np[list(xmaps_np.keys())[0]] # aligner = Aligner(static_map) # xmaps_aligned = mapdict(aligner, # xmaps_np, # executor, # ) xmaps_np = filter_on_grid(xmaps_np) # Embed the xmaps into a latent space print("Dimension reducing") xmap_embedding = embed_xmaps(xmaps_np.values()) # Cluster the embedding print("clustering") clustered_xmaps = cluster_embedding(xmap_embedding) # Make dataframe with cluster and position print("getting cluster dataframe") cluster_df = get_cluster_df( xmaps_np, xmap_embedding, clustered_xmaps, ) cluster_df_summary(cluster_df) # Get clusters print("associating xmaps with clusters") map_clusters = get_map_clusters( cluster_df, xmaps_aligned, ) # print("Map clusters: {}".format(map_clusters)) # Make mean maps executor_seriel = ExecutorMap() mean_maps_np = mapdict( lambda x: make_mean_map(x), map_clusters, executor_seriel, ) # print("Mean maps mp: {}".format(mean_maps_np)) # Output the mean maps print("Outputting mean maps") template_map = xmaps[list(xmaps.keys())[0]] # print(template_map) # cell = dataset.datasets[list(dataset.datasets.keys())[0]].reflections.hkl_info.cell cell = clipper_python.Cell( clipper_python.Cell_descr(100, 100, 100, np.pi / 2, np.pi / 2, np.pi / 2)) for cluster_num, mean_map_np_list in mean_maps_np.items(): output_mean_map( template_map, mean_map_np_list, p.Path(args.out_dir) / "{}.ccp4".format(cluster_num), ) # output_mean_nxmap(mean_map_np_list, # cell, # p.Path(args.out_dir) / "{}.ccp4".format(cluster_num), # ) # Ouptut the csv print("Outputting csv") output_labeled_embedding_csv( cluster_df, str(p.Path(args.out_dir) / "labelled_embedding.csv"), ) # Output the graph # output_cluster_graph(cluster_df, str(out_dir / "output_graph.png")) return cluster_df
def cluster_datasets_tm(args) -> None: # Get executor if args.processor == "joblib": set_loky_pickler("pickle") executor = ExecutorJoblib(20) elif args.processor == "map": executor = ExecutorMap() executor_map = ExecutorMap() print("defined executor") # Get Dataset print("Loading datasets") dataset = MultiCrystalDataset.mcd_from_pandda_input_dir( p.Path(args.data_dirs)) print("got datasets") print("\tBefore tuncation on res there are {} datasets".format( len(dataset.datasets))) dataset = truncate_dataset_on_resolution(dataset) print("\tAfter truncationt on res here are {} datasets".format( len(dataset.datasets))) # Select lowest res dataset min_res = get_min_res(dataset) # # Align structures # aligners = # alignments = mapdict(wrap_call, # alginers, # dataset.datasets.items(), # ) # # # # Load xmaps # print("Getting exmpas") # xmaps = mapdict(Loader(min_res=None, # grid_params=grid_params, # ), # dataset.datasets, # executor, # ) # Sample to reference frame cell = clipper_python.Cell( clipper_python.Cell_descr(100, 100, 100, np.pi / 2, np.pi / 2, np.pi / 2)) spacegroup = clipper_python.Spacegroup(clipper_python.Spgr_descr("1")) # Get reference model reference_model = list(dataset.datasets.items())[0][1].structure.structure io = PDBIO() io.set_structure(reference_model) io.save('out_before.pdb') atoms_list = np.array( [atom.get_coord() for atom in reference_model.get_atoms()]) print(atoms_list) mean_coords = np.mean(atoms_list, axis=0) print(mean_coords) # rotation = rotmat(Vector(0,1,0), Vector(1, 0, 0)) rotation = np.eye(3) translation = np.array(mean_coords, 'f') for atom in reference_model.get_atoms(): atom.transform(rotation, -translation) io = PDBIO() io.set_structure(reference_model) io.save('out.pdb') # exit() # Get model alignmetns aligners = { dtag: lambda: align(ref_structure=reference_model, mobile_structure=d.structure.structure) for dtag, d in dataset.datasets.items() } print(aligners) alignments = mapdict( wrap_call, aligners, executor_map, ) # align structures def align_structures(alignment, structure, output_path): alignment.apply(structure) io = PDBIO() io.set_structure(structure) print("Saving to {}".format(output_path)) io.save(str(output_path)) return structure structure_aligners = { dtag: lambda: align_structures( alignments[dtag], d.structure.structure, p.Path(args.out_dir) / dtag, ) for dtag, d in dataset.datasets.items() } print(structure_aligners) print("aligning and outputting structures") aligned_structures = mapdict( wrap_call, structure_aligners, executor_map, ) # structure_aligners = {dtag: lambda: alignment.apply(dataset.dataset[dtag].structure.structure) # for dtag, alignment # in alignments.items() # } # aligned_structures = mapdict(wrap_call, # structure_aligners, # executor_map, # ) # # # ouput aligned structures # structure_outputters = {dtag: lambda: PDBIO().set_structure()} exit() # Convert xmaps to np print("Converting xmaps to np") static_structure = dataset.datasets[list( dataset.datasets.keys())[0]].structure.structure # print("Got static structure") aligners = {} for dtag, xmap in xmaps.items(): aligners[dtag] = StructureAligner( static_structure, dataset.datasets[dtag].structure.structure, xmap, ) xmaps_aligned = mapdict( wrap_call, aligners, executor, ) # Rescale rescaler = Rescaler() xmaps_np = mapdict( rescaler, xmaps_aligned, executor, ) postcondtion_scaling(xmaps_np) # Align xmaps print("aligning xmaps") xmaps_np = filter_on_grid(xmaps_np) # Embed the xmaps into a latent space print("Dimension reducing") xmap_embedding = embed_xmaps(xmaps_np.values()) # Cluster the embedding print("clustering") clustered_xmaps = cluster_embedding(xmap_embedding) # Make dataframe with cluster and position print("getting cluster dataframe") cluster_df = get_cluster_df( xmaps_np, xmap_embedding, clustered_xmaps, ) cluster_df_summary(cluster_df) # Get clusters print("associating xmaps with clusters") map_clusters = get_map_clusters( cluster_df, xmaps_aligned, ) # Make mean maps executor_seriel = ExecutorMap() mean_maps_np = mapdict( lambda x: make_mean_map(x), map_clusters, executor_seriel, ) # Output the mean maps print("Outputting mean maps") template_map = xmaps[list(xmaps.keys())[0]] # print(template_map) # cell = dataset.datasets[list(dataset.datasets.keys())[0]].reflections.hkl_info.cell cell = clipper_python.Cell( clipper_python.Cell_descr(100, 100, 100, np.pi / 2, np.pi / 2, np.pi / 2)) for cluster_num, mean_map_np_list in mean_maps_np.items(): output_mean_map( template_map, mean_map_np_list, p.Path(args.out_dir) / "{}.ccp4".format(cluster_num), ) # output_mean_nxmap(mean_map_np_list, # cell, # p.Path(args.out_dir) / "{}.ccp4".format(cluster_num), # ) # Ouptut the csv print("Outputting csv") output_labeled_embedding_csv( cluster_df, str(p.Path(args.out_dir) / "labelled_embedding.csv"), ) # Output the graph # output_cluster_graph(cluster_df, str(out_dir / "output_graph.png")) return cluster_df
def cluster_datasets_luigi(ccp4_map_paths, out_dir, processor, n_procs) -> pd.DataFrame: # Get executor if processor == "joblib": set_loky_pickler("pickle") executor = ExecutorJoblib(int(n_procs)) elif processor == "map": executor = ExecutorMap() # Load xmaps to np print("Getting exmpas") loaders = {} for dtag in ccp4_map_paths: loaders[dtag] = LoaderCCP4(ccp4_map_paths[dtag]["path"]) xmaps_np = mapdict( wrap_call, loaders, executor, ) # Truncate to same shape dims = np.vstack([xmap.shape for xmap in xmaps_np.values()]) print(dims) truncation_shape = np.min( dims, axis=0, ) print("The truncation shape is: {}".format(truncation_shape)) xmaps_np = { dtag: xmap_np[:truncation_shape[0], :truncation_shape[1], : truncation_shape[2], ] for dtag, xmap_np in xmaps_np.items() } # Embed the xmaps into a latent space print("Dimension reducing") xmap_embedding = embed_xmaps(xmaps_np.values()) # Cluster the embedding print("clustering") # clustered_xmaps = cluster_embedding(xmap_embedding) clustering = cluster_embedding(xmap_embedding) exemplars = clustering.exemplars_ clustered_xmaps = clustering.labels_ outlier_scores = clustering.outlier_scores_ print("Exemplars: {}".format(exemplars)) print("Outlier scores: {}".format(outlier_scores)) print("Labels: {}".format(clustered_xmaps)) dtags = np.array(list(xmaps_np.keys())) cluster_exemplars = {} for cluster_num in np.unique(clustered_xmaps): if cluster_num == -1: continue cluster_dtags = dtags[clustered_xmaps == cluster_num] cluster_outlier_scores = outlier_scores[clustered_xmaps == cluster_num] cluster_exemplars[cluster_num] = cluster_dtags[np.argmin( cluster_outlier_scores)] print("Outlier scores dict: {}".format({ dtag: outlier_score for dtag, outlier_score in zip( list(cluster_dtags), list(cluster_outlier_scores), ) })) print("Cluster exemplars: {}".format(cluster_exemplars)) # Make dataframe with cluster and position print("getting cluster dataframe") cluster_df = get_cluster_df( xmaps_np, xmap_embedding, clustered_xmaps, ) cluster_df_summary(cluster_df) # Get clusters print("associating xmaps with clusters") map_clusters = get_map_clusters( cluster_df, xmaps_np, ) # Make mean maps executor_seriel = ExecutorMap() mean_maps_np = mapdict( lambda x: make_mean_map(x), map_clusters, executor_seriel, ) # Output the mean maps print("Outputting mean maps") template_nxmap = load_ccp4_map(list(ccp4_map_paths.values())[0]["path"]) for cluster_num, mean_map_np in mean_maps_np.items(): dataset_clustering.xmap_utils.save_nxmap_from_template( template_nxmap, mean_map_np, p.Path(out_dir) / "{}.ccp4".format(cluster_num), ) # Ouptut the csv print("Outputting csv") output_labeled_embedding_csv( cluster_df, str(p.Path(out_dir) / "labelled_embedding.csv"), ) print("Cluster DF is: \n{}".format(cluster_df)) return cluster_df
def cluster(xmap_embedding): clustering = cluster_embedding(xmap_embedding) return clustering