def save_products_muni():
    ret = process_dataset(trade4digit_municipality)

    df = ret[('location_id', 'product_id', 'year')]
    df = merge_classifications(df)

    pci = process_dataset(trade4digit_country)[('product_id', 'year')][["pci"]].reset_index()
    df = df.reset_index().merge(pci, on=["product_id", "year"], how="outer")
    return df.set_index(['location_id', 'product_id', 'year'])
def save_products_muni():
    ret = process_dataset(trade4digit_municipality)

    df = ret[('location_id', 'product_id', 'year')]
    df = merge_classifications(df)

    pci = process_dataset(trade4digit_country)[('product_id', 'year')][["pci"]].reset_index()
    df = df.reset_index().merge(pci, on=["product_id", "year"], how="outer")
    return df.set_index(['location_id', 'product_id', 'year'])
def save_rcpy(rcpy_dataset):
    ret = process_dataset(rcpy_dataset)
    df = ret[("country_id", "location_id", "product_id", "year")]

    df = merge_classifications(df)

    pci = process_dataset(trade4digit_country)[('product_id', 'year')][["pci"]].reset_index()
    df = df.reset_index().merge(pci, on=["product_id", "year"], how="outer")
    return df.set_index(['country_id', 'location_id', 'product_id', 'year'])
def save_rcpy(rcpy_dataset):
    ret = process_dataset(rcpy_dataset)
    df = ret[("country_id", "location_id", "product_id", "year")]

    df = merge_classifications(df)

    pci = process_dataset(trade4digit_country)[('product_id', 'year')][["pci"]].reset_index()
    df = df.reset_index().merge(pci, on=["product_id", "year"], how="outer")
    return df.set_index(['country_id', 'location_id', 'product_id', 'year'])
def save_industries_municipality():
    ret = process_dataset(industry4digit_municipality)

    m = ret[('location_id', 'industry_id', 'year')]

    m = merge_classifications(m)
    return m
def save_occupations():
    ret = process_dataset(occupation2digit_industry2digit)
    m = ret[('occupation_id', 'industry_id')]

    m = merge_classifications(m)
    m["year"] = current_app.config["YEAR_MAX_DEMOGRAPHIC"]
    return m.set_index("year")
def save_demographic():
    ret = process_dataset(gdp_real_department)
    gdp_real_df = ret[('location_id', 'year')]

    ret = process_dataset(gdp_nominal_department)
    gdp_nominal_df = ret[('location_id', 'year')]

    gdp_df = gdp_real_df.join(gdp_nominal_df).reset_index()

    ret = process_dataset(population)
    pop_df = ret[('location_id', 'year')].reset_index()

    m = gdp_df.merge(pop_df, on=["location_id", "year"], how="outer")

    m = merge_classifications(m.set_index(['location_id', 'year']))
    return m
def save_demographic():
    ret = process_dataset(gdp_real_department)
    gdp_real_df = ret[('location_id', 'year')]

    ret = process_dataset(gdp_nominal_department)
    gdp_nominal_df = ret[('location_id', 'year')]

    gdp_df = gdp_real_df.join(gdp_nominal_df).reset_index()

    ret = process_dataset(population)
    pop_df = ret[('location_id', 'year')].reset_index()

    m = gdp_df.merge(pop_df, on=["location_id", "year"], how="outer")

    m = merge_classifications(m.set_index(['location_id', 'year']))
    return m
def save_occupations():
    ret = process_dataset(occupation2digit_industry2digit)
    m = ret[('occupation_id', 'industry_id')]

    m = merge_classifications(m)
    m["year"] = 2014
    return m.set_index("year")
def save_industries_municipality():
    ret = process_dataset(industry4digit_municipality)

    m = ret[('location_id', 'industry_id', 'year')]

    m = merge_classifications(m)
    return m
示例#11
0
def save_occupations():
    ret = process_dataset(occupation2digit_industry2digit)
    m = ret[('occupation_id', 'industry_id')]

    m = merge_classifications(m)
    m["year"] = 2014
    return m.set_index("year")
def save_industries_msa():
    ret = process_dataset(industry4digit_msa)

    dpy = ret[('location_id', 'industry_id', 'year')].reset_index()
    py = ret[('industry_id', 'year')][["complexity"]].reset_index()

    m = dpy.merge(py, on=["industry_id", "year"])
    m = merge_classifications(m.set_index(['location_id', 'industry_id', 'year']))
    return m
def save_industries_country():
    ret = process_dataset(industry4digit_country)

    dpy = ret[('location_id', 'industry_id', 'year')].reset_index()
    py = ret[('industry_id', 'year')][["complexity"]].reset_index()

    m = dpy.merge(py, on=["industry_id", "year"])
    m = merge_classifications(m.set_index(['location_id', 'industry_id', 'year']))
    return m
def save_industries_department():
    ret = process_dataset(industry4digit_department)

    dpy = ret[('location_id', 'industry_id', 'year')].reset_index()
    py = ret[('industry_id', 'year')][["complexity"]].reset_index()
    ly = ret[('location_id', 'year')][["industry_eci", "industry_coi"]].reset_index()

    m = dpy.merge(py, on=["industry_id", "year"])
    m = m.merge(ly, on=["location_id", "year"])
    m = merge_classifications(m.set_index(['location_id', 'industry_id', 'year']))
    return m
def save_rural(path, datasets, facet=None, prefix=""):

    results = {}

    for geolevel, dataset in datasets.items():
        ret = process_dataset(dataset)

        if facet is None:
            facet = list(ret.keys())[0]

        results[geolevel] = merge_classifications(ret[facet])

        save(path, results[geolevel],
             "{}{}".format(prefix, geolevel),
             format="excel",
             include_from_index=None,
             )

    return results
                                            models.FarmType)
        db.session.add_all(farmtype)
        db.session.commit()

        farmsize = classification_to_models(farmsize_classification,
                                            models.FarmSize)
        db.session.add_all(farmsize)
        db.session.commit()

        countries = classification_to_models(country_classification,
                                             models.Country)
        db.session.add_all(countries)
        db.session.commit()

        # Country product year
        ret = process_dataset(trade4digit_country)

        df = ret[('location_id', 'product_id', 'year')].reset_index()
        df["level"] = "4digit"
        df.to_sql("country_product_year",
                  db.engine,
                  index=False,
                  chunksize=10000,
                  if_exists="append")

        # Department product year
        ret = process_dataset(trade4digit_department)

        df = ret[('product_id', 'year')].reset_index()
        df["level"] = "4digit"
        df.to_sql("product_year",
def save_products_country():
    ret = process_dataset(trade4digit_country)
    dpy = ret[('location_id', 'product_id', 'year')]
    return merge_classifications(dpy)
def save_products_msa():
    ret = process_dataset(trade4digit_msa)
    m = region_product_year(ret)
    m = merge_classifications(m)
    return m
示例#19
0
                                              models.Industry)
        db.session.add_all(industries)
        db.session.commit()

        occupations = classification_to_models(occupation_classification,
                                               models.Occupation)
        db.session.add_all(occupations)
        db.session.commit()

        countries = classification_to_models(country_classification,
                                             models.Country)
        db.session.add_all(countries)
        db.session.commit()

        # Country product year
        ret = process_dataset(trade4digit_country)

        df = ret[('location_id', 'product_id', 'year')].reset_index()
        df["level"] = "4digit"
        df.to_sql("country_product_year",
                  db.engine,
                  index=False,
                  chunksize=10000,
                  if_exists="append")

        # Department product year
        ret = process_dataset(trade4digit_department)

        df = ret[('product_id', 'year')].reset_index()
        df["level"] = "4digit"
        df.to_sql("product_year",
def save_products_msa():
    ret = process_dataset(trade4digit_msa)
    m = region_product_year(ret)
    m = merge_classifications(m)
    return m
示例#21
0
            "gdp_real": first,
            "gdp_nominal": first,
            "gdp_pc_real": first,
            "gdp_pc_nominal": first,
            "population": first,
        }
    }
}

if __name__ == "__main__":
    import dataset_tools

    store = pd.HDFStore("data.h5", complib="blosc")

    # Country Product Year
    cpy = dataset_tools.process_dataset(trade4digit_country)
    df = cpy[("location_id", "product_id", "year")].reset_index()

    df.to_hdf(store, "country_product_year", format="table")
    attrs = {
        "sql_table_name": "country_product_year",
        "location_level": "country",
        "product_level": "4digit"
    }
    store.get_storer("/country_product_year").attrs.atlas_metadata = attrs

    # Country Year
    cy = cpy[("location_id", "year")].reset_index()

    cy.to_hdf(store, "country_year", format="table")
    attrs = {
            db.session.add_all(industries)
            db.session.commit()

            occupations = classification_to_models(occupation_classification,
                                                  models.Occupation)
            db.session.add_all(occupations)
            db.session.commit()


            countries = classification_to_models(country_classification,
                                                  models.Country)
            db.session.add_all(countries)
            db.session.commit()

            # Country product year
            ret = process_dataset(trade4digit_country)

            df = ret[('location_id', 'product_id', 'year')].reset_index()
            df["level"] = "4digit"
            df.to_sql("country_product_year", db.engine, index=False,
                      chunksize=10000, if_exists="append")

            # Department product year
            ret = process_dataset(trade4digit_department)

            df = ret[('product_id', 'year')].reset_index()
            df["level"] = "4digit"
            df.to_sql("product_year", db.engine, index=False,
                      chunksize=10000, if_exists="append")

            df = ret[('location_id', 'product_id', 'year')].reset_index()
示例#23
0
                                                  models.FarmType)
            db.session.add_all(farmtype)
            db.session.commit()

            farmsize = classification_to_models(farmsize_classification,
                                                  models.FarmSize)
            db.session.add_all(farmsize)
            db.session.commit()

            countries = classification_to_models(country_classification,
                                                  models.Country)
            db.session.add_all(countries)
            db.session.commit()

            # Country product year
            ret = process_dataset(trade4digit_country)

            df = ret[('location_id', 'product_id', 'year')].reset_index()
            df["level"] = "4digit"
            df.to_sql("country_product_year", db.engine, index=False,
                      chunksize=10000, if_exists="append")

            # Department product year
            ret = process_dataset(trade4digit_department)

            df = ret[('product_id', 'year')].reset_index()
            df["level"] = "4digit"
            df.to_sql("product_year", db.engine, index=False,
                      chunksize=10000, if_exists="append")

            df = ret[('location_id', 'product_id', 'year')].reset_index()