示例#1
0
def test_transform(args, image):

    input_size1 = 512
    input_size2 = 448

    if int(args.subset) == 0 or int(args.subset) == 192:
        transform = transforms.Compose([
            transforms.Resize(input_size1),
            transforms.CenterCrop(input_size2),
            transforms.Upscale(upscale_factor=2),
            transforms.TransformUpscaledDCT(),
            transforms.ToTensorDCT(),
            transforms.Aggregate(),
            transforms.NormalizeDCT(
                train_upscaled_static_mean,
                train_upscaled_static_std,
            )
        ])
    else:
        transform = transforms.Compose([
            transforms.Resize(input_size1),
            transforms.CenterCrop(input_size2),
            transforms.Upscale(upscale_factor=2),
            transforms.TransformUpscaledDCT(),
            transforms.ToTensorDCT(),
            transforms.SubsetDCT(channels=args.subset),
            transforms.Aggregate(),
            transforms.NormalizeDCT(train_upscaled_static_mean,
                                    train_upscaled_static_std,
                                    channels=args.subset)
        ])

    return transform
示例#2
0
def trainloader_dct_subset(args):
    traindir = os.path.join(args.data, 'train')
    train_dataset = ImageFolderDCT(traindir, transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.TransformDCT(),
        transforms.ToTensorDCT(),
        transforms.SubsetDCT(args.subset_channels),
        transforms.NormalizeDCT(
            train_y_mean, train_y_std,
            train_cb_mean, train_cb_std,
            train_cr_mean, train_cr_std),
    ]))

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
    else:
        train_sampler = None

    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.train_batch, shuffle=(train_sampler is None),
        num_workers=args.workers, pin_memory=True, sampler=train_sampler)

    train_loader_len = len(train_loader)

    return train_loader, train_sampler, train_loader_len
示例#3
0
def trainloader_dct_resized(args):
    traindir = os.path.join(args.data, 'train')
    train_dataset = ImageFolderDCT(traindir, transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.TransformDCT(),  # 28x28x192
        transforms.DCTFlatten2D(),
        transforms.UpsampleDCT(upscale_ratio_h=4, upscale_ratio_w=4, debug=False),
        transforms.ToTensorDCT(),
        transforms.SubsetDCT(channels=args.subset),
        transforms.Aggregate(),
        transforms.NormalizeDCT(
            train_dct_subset_mean,
            train_dct_subset_std,
            channels=args.subset
        )
    ]))

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
    else:
        train_sampler = None

    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.train_batch, shuffle=(train_sampler is None),
        num_workers=args.workers, pin_memory=True, sampler=train_sampler)

    train_loader_len = len(train_loader)

    return train_loader, train_sampler, train_loader_len
示例#4
0
def valloader_upscaled_static(args, model='mobilenet'):
    valdir = os.path.join(args.data, 'val')

    if model == 'mobilenet':
        input_size1 = 1024
        input_size2 = 896
    elif model == 'resnet':
        input_size1 = 512
        input_size2 = 448
    else:
        raise NotImplementedError

    transform = transforms.Compose([
            transforms.Resize(input_size1),
            transforms.CenterCrop(input_size2),
            transforms.Upscale(upscale_factor=2),
            transforms.TransformUpscaledDCT(),
            transforms.ToTensorDCT(),
            transforms.SubsetDCT(channels=args.subset, pattern=args.pattern),
            transforms.Aggregate(),
            transforms.NormalizeDCT(
                train_upscaled_static_mean,
                train_upscaled_static_std,
                channels=args.subset,
                pattern=args.pattern
            )
        ])

    val_loader = torch.utils.data.DataLoader(
        ImageFolderDCT(valdir, transform),
        batch_size=args.test_batch, shuffle=False,
        num_workers=args.workers, pin_memory=True)

    return val_loader
示例#5
0
def trainloader_upscaled_static(args, model='mobilenet'):
    valdir = os.path.join(args.data, 'train')

    if model == 'mobilenet':
        input_size1 = 1024
        input_size2 = 896
    elif model == 'resnet':
        input_size1 = 512
        input_size2 = 448
    else:
        raise NotImplementedError
    if int(args.subset) == 0 or int(args.subset) == 192:
        transform = transforms.Compose([
            enhance.random_crop(),
            enhance.horizontal_flip(),
            enhance.vertical_flip(),
            enhance.random_rotation(),
            enhance.tocv2(),
            transforms.Resize(input_size1),
            transforms.CenterCrop(input_size2),
            transforms.Upscale(upscale_factor=2),
            transforms.TransformUpscaledDCT(),
            transforms.ToTensorDCT(),
            transforms.Aggregate(),
            transforms.NormalizeDCT(
                train_upscaled_static_mean,
                train_upscaled_static_std,
            )
        ])
    else:
        transform = transforms.Compose([
            enhance.random_crop(),
            enhance.horizontal_flip(),
            enhance.vertical_flip(),
            enhance.random_rotation(),
            enhance.tocv2(),
            transforms.Resize(input_size1),
            transforms.CenterCrop(input_size2),
            transforms.Upscale(upscale_factor=2),
            transforms.TransformUpscaledDCT(),
            transforms.ToTensorDCT(),
            transforms.SubsetDCT(channels=args.subset),
            transforms.Aggregate(),
            transforms.NormalizeDCT(train_upscaled_static_mean,
                                    train_upscaled_static_std,
                                    channels=args.subset)
        ])
    dset = ImageFolderDCT(valdir, transform, backend='pil')
    val_loader = torch.utils.data.DataLoader(dset,
                                             batch_size=args.train_batch,
                                             shuffle=True,
                                             num_workers=args.workers,
                                             pin_memory=True)

    return val_loader, len(dset), dset.get_clsnum()
示例#6
0
def test(model):
    # bar = Bar('Processing', max=len(val_loader))

    # batch_time = AverageMeter()
    # data_time = AverageMeter()
    # losses = AverageMeter()
    # top1 = AverageMeter()
    # top5 = AverageMeter()

    # switch to evaluate mode
    model.eval()

    csvfile = open('./csv.csv', 'w')
    writer = csv.writer(csvfile)
    test_root = './data/test/'
    img_test = os.listdir(test_root)
    img_test.sort(key=lambda x: int(x[:-4]))

    input_size1 = 512
    input_size2 = 448

    transform = transforms.Compose([
        transforms.Resize(input_size1),
        transforms.CenterCrop(input_size2),
        transforms.Upscale(upscale_factor=2),
        transforms.TransformUpscaledDCT(),
        transforms.ToTensorDCT(),
        transforms.SubsetDCT(channels=args.subset),
        transforms.Aggregate(),
        transforms.NormalizeDCT(train_upscaled_static_mean,
                                train_upscaled_static_std,
                                channels=args.subset)
    ])

    with torch.no_grad():
        # end = time.time()
        for i in range(len(img_test)):
            model.eval()
            # measure data loading time
            # data_time.update(time.time() - end)

            # image, target = image.cuda(non_blocking=True), target.cuda(
            #     non_blocking=True)

            image = cv2.imread(str(test_root + img_test[i]))
            image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            # print(transform(image)[0])
            # print(type(transform(image)[0]))
            # compute output
            output = model(transform(image)[0].unsqueeze(dim=0))
            #print(output)
            _, pred = torch.max(output.data, 1)
            print(i, pred.tolist()[0])
            writer.writerow([i, pred.tolist()[0]])
示例#7
0
def folder2lmdb(dpath, name="train", write_frequency=1):
    directory = osp.expanduser(osp.join(dpath, name))
    print("Loading dataset from %s" % directory)

    dataset = ImageFolderDCT('/ILSVRC2012/train',
                             transforms.Compose([
                                 transforms.DCTFlatten2D(),
                                 transforms.UpsampleDCT(upscale_ratio_h=4,
                                                        upscale_ratio_w=4,
                                                        debug=False),
                                 transforms.ToTensorDCT(),
                                 transforms.SubsetDCT(channels=32),
                             ]),
                             backend='dct')

    data_loader = torch.utils.data.DataLoader(
        dataset,
        num_workers=0,
    )

    lmdb_path = osp.join(dpath, "%s.lmdb" % name)
    isdir = os.path.isdir(lmdb_path)

    print("Generate LMDB to %s" % lmdb_path)
    db = lmdb.open(
        lmdb_path,
        subdir=isdir,
        map_size=1281167 * 224 * 224 * 32 * 10,
        readonly=False,
        # map_size=1099511627776 * 2, readonly=False,
        meminit=False,
        map_async=True)

    txn = db.begin(write=True)
    for idx, (image, label) in enumerate(data_loader):
        image = image.numpy()
        label = label.numpy()
        txn.put(u'{}'.format(idx).encode('ascii'),
                dumps_pyarrow((bz2.compress(image), label)))
        if idx % write_frequency == 0:
            print("[%d/%d]" % (idx, len(data_loader)))
            txn.commit()
            txn = db.begin(write=True)

    # finish iterating through dataset
    txn.commit()
    keys = [u'{}'.format(k).encode('ascii') for k in range(idx + 1)]
    with db.begin(write=True) as txn:
        txn.put(b'__keys__', dumps_pyarrow(keys))
        txn.put(b'__len__', dumps_pyarrow(len(keys)))

    print("Flushing database ...")
    db.sync()
    db.close()
示例#8
0
 def get_composed_transform_dct(self, aug=False, filter_size=8):
     # print("aug: ", aug)
     # print("filter size,", filter_size)
     if aug == False:
         transform = transforms_dct.Compose([  #transform_funcs,
             transforms_dct.Resize(int(filter_size * 56 * 1.15)),
             transforms_dct.CenterCrop(filter_size * 56),
             transforms_dct.GetDCT(filter_size),
             transforms_dct.UpScaleDCT(size=56),
             transforms_dct.ToTensorDCT(),
             transforms_dct.SubsetDCT(channels=24),
             transforms_dct.Aggregate(),
             transforms_dct.NormalizeDCT(
                 #  train_y_mean_resized,  train_y_std_resized,
                 #  train_cb_mean_resized, train_cb_std_resized,
                 #  train_cr_mean_resized, train_cr_std_resized),
                 train_upscaled_static_mean,
                 train_upscaled_static_std,
                 channels=24)
             #transforms_dct.Aggregate()
         ])
     else:
         transform = transforms_dct.Compose([  #transform_funcs,
             transforms_dct.RandomResizedCrop(filter_size * 56),
             transforms_dct.ImageJitter(self.jitter_param),
             transforms_dct.RandomHorizontalFlip(),
             transforms_dct.GetDCT(filter_size),
             transforms_dct.UpScaleDCT(size=56),
             transforms_dct.ToTensorDCT(),
             transforms_dct.SubsetDCT(channels=24),
             transforms_dct.Aggregate(),
             transforms_dct.NormalizeDCT(
                 #  train_y_mean_resized,  train_y_std_resized,
                 #  train_cb_mean_resized, train_cb_std_resized,
                 #  train_cr_mean_resized, train_cr_std_resized),
                 train_upscaled_static_mean,
                 train_upscaled_static_std,
                 channels=24)
         ])
     return transform
示例#9
0
 def cvt_transform(self, img):
     return cvtransforms.Compose([
         cvtransforms.RandomResizedCrop(self.img_size),
         # cvtransforms.RandomHorizontalFlip(),
         cvtransforms.Upscale(upscale_factor=2),
         cvtransforms.TransformUpscaledDCT(),
         cvtransforms.ToTensorDCT(),
         cvtransforms.SubsetDCT(channels=192),
         cvtransforms.Aggregate(),
         cvtransforms.NormalizeDCT(train_upscaled_static_mean,
                                   train_upscaled_static_std,
                                   channels=192)
     ])(img)
示例#10
0
def valloader_dct_subset(args):
    valdir = os.path.join(args.data, 'val')

    val_loader = torch.utils.data.DataLoader(
        ImageFolderDCT(valdir, transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.TransformDCT(),
            transforms.ToTensorDCT(),
            transforms.SubsetDCT(args.subset_channels),
            transforms.NormalizeDCT(
                train_y_mean, train_y_std,
                train_cb_mean, train_cb_std,
                train_cr_mean, train_cr_std),
        ])),
        batch_size=args.test_batch, shuffle=False,
        num_workers=args.workers, pin_memory=True)

    return val_loader
示例#11
0
def trainloader_upscaled_static(args, model='mobilenet'):
    traindir = os.path.join(args.data, 'train')

    if model == 'mobilenet':
        input_size = 896
    elif model == 'resnet':
        input_size = 448
    else:
        raise NotImplementedError

    transform = transforms.Compose([
        transforms.RandomResizedCrop(input_size),
        transforms.RandomHorizontalFlip(),
        transforms.Upscale(upscale_factor=2),
        transforms.TransformUpscaledDCT(),
        transforms.ToTensorDCT(),
        transforms.SubsetDCT(channels=args.subset, pattern=args.pattern),
        transforms.Aggregate(),
        transforms.NormalizeDCT(
            train_upscaled_static_mean,
            train_upscaled_static_std,
            channels=args.subset,
            pattern=args.pattern
        )
    ])

    train_dataset = ImageFolderDCT(traindir, transform)

    if args.distributed:
        train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
    else:
        train_sampler = None

    train_loader = torch.utils.data.DataLoader(
        train_dataset,
        batch_size=args.train_batch, shuffle=(train_sampler is None),
        num_workers=args.workers, pin_memory=True, sampler=train_sampler)

    train_loader_len = len(train_loader)

    return train_loader, train_sampler, train_loader_len
示例#12
0
def valloader_dct_resized(args):
    valdir = os.path.join(args.data, 'val')

    val_loader = torch.utils.data.DataLoader(
        ImageFolderDCT(valdir, transforms.Compose([
            transforms.Resize(256),
            transforms.CenterCrop(224),
            transforms.TransformDCT(),  # 28x28x192
            transforms.DCTFlatten2D(),
            transforms.UpsampleDCT(upscale_ratio_h=4, upscale_ratio_w=4, debug=False),
            transforms.ToTensorDCT(),
            transforms.SubsetDCT(channels=args.subset),
            transforms.Aggregate(),
            transforms.NormalizeDCT(
                train_dct_subset_mean,
                train_dct_subset_std,
                channels=args.subset
            )
        ])),
        batch_size=args.test_batch, shuffle=False,
        num_workers=args.workers, pin_memory=True)

    return val_loader
示例#13
0
    # transform3 =transforms.Compose([
    #     transforms.RandomResizedCrop(224),
    #     transforms.RandomHorizontalFlip(),
    #     transforms.ResizedTransformDCT(),
    #     transforms.ToTensorDCT(),
    #     transforms.SubsetDCT(32),
    # ])

    transform4 = transforms.Compose([
        transforms.RandomResizedCrop(896),
        transforms.RandomHorizontalFlip(),
        transforms.Upscale(upscale_factor=2),
        transforms.TransformUpscaledDCT(),
        transforms.ToTensorDCT(),
        transforms.SubsetDCT(channels='24'),
        transforms.Aggregate(),
        transforms.NormalizeDCT(
            train_upscaled_static_mean,
            train_upscaled_static_std,
            channels='24'
        )
        ])

    transform5 = transforms.Compose([
        transforms.DCTFlatten2D(),
        transforms.UpsampleDCT(size_threshold=112 * 8, T=112 * 8, debug=False),
        transforms.SubsetDCT2(channels='32'),
        transforms.Aggregate2(),
        transforms.RandomResizedCropDCT(112),
        transforms.RandomHorizontalFlip(),