def test02(): print("Test 02") print("Running RecommenderCosineCB RR:") dataset: DatasetST = DatasetRetailRocket.readDatasets() args: dict = { RecommenderCosineCB.ARG_CB_DATA_PATH: Configuration.cbRRDataFileWithPathOHE, RecommenderCosineCB.ARG_USER_PROFILE_SIZE: 5, RecommenderCosineCB.ARG_USER_PROFILE_STRATEGY: "max", RecommenderCosineCB.ARG_USE_DIVERSITY: False, } #True rec: ARecommender = RecommenderCosineCB("test", args) rec.train(HistoryDF("test"), dataset) eventsDFDFUpdate: DataFrame = dataset.eventsDF.iloc[5003:5004] print(eventsDFDFUpdate) rec.update(eventsDFDFUpdate, args) # user with very outdated profile - no recent objects r: Series = rec.recommend(863743, 20, args) print(type(r)) print(r) # testing of a non-existent user r: Series = rec.recommend(10000, 50, args) print(type(r)) print(r)
def test11(): print("Simulation: RR TheMostPopular") rDescr:RecommenderDescription = InputRecomMLDefinition.exportRDescTheMostPopular() pDescr:APortfolioDescription = Portfolio1MethDescription(InputRecomMLDefinition.THE_MOST_POPULAR.title(), InputRecomMLDefinition.THE_MOST_POPULAR, rDescr) batchID:str = "retailrocketDiv90Ulinear0109R1" dataset:DatasetRetailRocket = DatasetRetailRocket.readDatasets() behaviourFile:str = BehavioursRR.getFile(BehavioursRR.BHVR_LINEAR0109) behavioursDF:DataFrame = BehavioursRR.readFromFileRR(behaviourFile) # simulation of portfolio simulator:Simulator = Simulator(batchID, SimulationRR, argsSimulationDict, dataset, behavioursDF) simulator.simulate([pDescr], [DataFrame()], [EToolDoNothing({})], [HistoryHierDF(pDescr.getPortfolioID())])