示例#1
0
 def run(cls, model, criterion, epoch, args):
     task = cls(model, epoch, args)
     loader, = get_dataset(args, splits=('val', ), dataset=args.dataset)
     model = FeatureExtractorWrapper(model, args)
     # model = set_distributed_backend(model, args)
     model.eval()
     return task.stabilize_all(loader, model, epoch, args)
示例#2
0
def main():
    global args, best_top1
    args = parse()
    if not args.no_logger:
        tee.Tee(args.cache + '/log.txt')
    print(vars(args))
    seed(args.manual_seed)

    model, criterion, optimizer = create_model(args)
    if args.resume:
        best_top1 = checkpoints.load(args, model, optimizer)
    print(model)
    trainer = train.Trainer()
    loaders = get_dataset(args)
    train_loader = loaders[0]

    if args.evaluate:
        scores = validate(trainer, loaders, model, criterion, args)
        checkpoints.score_file(scores, "{}/model_000.txt".format(args.cache))
        return

    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            trainer.train_sampler.set_epoch(epoch)
        scores = {}
        scores.update(trainer.train(train_loader, model, criterion, optimizer, epoch, args))
        scores.update(validate(trainer, loaders, model, criterion, args, epoch))

        is_best = scores[args.metric] > best_top1
        best_top1 = max(scores[args.metric], best_top1)
        checkpoints.save(epoch, args, model, optimizer, is_best, scores, args.metric)
    if not args.nopdb:
        pdb.set_trace()
 def run(cls, model, criterion, epoch, args):
     model = ActorObserverClassifierWrapper(model, args)
     model = set_distributed_backend(model, args)
     criterion = DefaultCriterion(args)
     task = cls(model, epoch, args)
     loader, = get_dataset(args, splits=('val_video', ), dataset=args.actor_observer_classification_task_dataset)
     return task.validate_video(loader, model, criterion, epoch, args)
def simpletest1():
    # test if the code can learn a simple sequence
    opt = parse()
    opts(opt)
    epochs = 40
    train_loader, val_loader, valvideo_loader = get_dataset(opt)
    trainer = train.Trainer()
    basemodel = nn.Linear(100, 5)
    model = AsyncTFBase(basemodel, 100, opt).cuda()
    criterion = AsyncTFCriterion(opt).cuda()
    optimizer = torch.optim.SGD(model.parameters(), opt.lr, momentum=opt.momentum, weight_decay=opt.weight_decay)
    epoch = -1
    for i in range(epochs):
        top1, _ = trainer.train(train_loader, model, criterion, optimizer, i, opt)
        print('cls weights: {}, aa weights: {}'.format(
            model.mA.parameters().next().norm().data[0],
            model.mAAa.parameters().next().norm().data[0]))
    top1, _ = trainer.validate(train_loader, model, criterion, epochs, opt)

    for i in range(5):
        top1val, _ = trainer.validate(val_loader, model, criterion, epochs + i, opt)
        print('top1val: {}'.format(top1val))

    ap = trainer.validate_video(valvideo_loader, model, criterion, epoch, opt)
    return top1, top1val, ap
示例#5
0
def main():
    best_score = 0
    args = parse()
    if not args.no_logger:
        tee.Tee(args.cache + '/log.txt')
    print(vars(args))
    print('experiment folder: {}'.format(experiment_folder()))
    print('git hash: {}'.format(get_script_dir_commit_hash()))
    seed(args.manual_seed)
    cudnn.benchmark = not args.disable_cudnn_benchmark
    cudnn.enabled = not args.disable_cudnn

    metrics = get_metrics(args.metrics)
    tasks = get_tasks(args.tasks)
    model, criterion = get_model(args)
    if args.optimizer == 'sgd':
        optimizer = torch.optim.SGD(model.parameters(),
                                    args.lr,
                                    momentum=args.momentum,
                                    weight_decay=args.weight_decay)
    elif args.optimizer == 'adam':
        optimizer = torch.optim.Adam(model.parameters(),
                                     args.lr,
                                     weight_decay=args.weight_decay)
    else:
        assert False, "invalid optimizer"

    if args.resume:
        best_score = checkpoints.load(args, model, optimizer)
    print(model)
    trainer = train.Trainer()
    train_loader, val_loader = get_dataset(args)

    if args.evaluate:
        scores = validate(trainer, val_loader, model, criterion, args, metrics,
                          tasks, -1)
        print(scores)
        score_file(scores, "{}/model_999.txt".format(args.cache))
        return

    if args.warmups > 0:
        for i in range(args.warmups):
            print('warmup {}'.format(i))
            trainer.validate(train_loader, model, criterion, -1, metrics, args)
    for epoch in range(args.start_epoch, args.epochs):
        if args.distributed:
            trainer.train_sampler.set_epoch(epoch)
        scores = {}
        scores.update(
            trainer.train(train_loader, model, criterion, optimizer, epoch,
                          metrics, args))
        scores.update(
            validate(trainer, val_loader, model, criterion, args, metrics,
                     tasks, epoch))
        is_best = scores[args.metric] > best_score
        best_score = max(scores[args.metric], best_score)
        checkpoints.save(epoch, args, model, optimizer, is_best, scores,
                         args.metric)
示例#6
0
 def run(cls, model, criterion, epoch, args):
     task = cls(model, epoch, args)
     train_loader, val_loader = get_dataset(args,
                                            splits=('train', 'val'),
                                            dataset=args.dataset)
     model.eval()
     task.visualize_all(train_loader, model, epoch, args, 'train')
     task.visualize_all(val_loader, model, epoch, args, 'val')
     return {'visualization_task': args.cache}
 def run(cls, model, criterion, epoch, args):
     model = ActorObserverClassifierWrapper(model, args)
     model = set_distributed_backend(model, args)
     criterion = DefaultCriterion(args)
     task = cls(model, epoch, args)
     newargs = copy.deepcopy(args)
     if ';' in args.train_file:
         vars(newargs).update({
             'train_file': args.train_file.split(';')[1],
             'val_file': args.val_file.split(';')[1],
             'data': args.data.split(';')[1]
         })
     if '3d' in args.arch:
         loader, = get_dataset(newargs,
                               splits=('val_video', ),
                               dataset='charades_video')
     else:
         loader, = get_dataset(newargs,
                               splits=('val_video', ),
                               dataset='charades')
     return task.validate_video(loader, model, criterion, epoch, args)
示例#8
0
 def run(cls, model, criterion, epoch, args):
     task = cls(model, epoch, args)
     loader, = get_dataset(args, splits=('val', ), dataset=args.dataset)
     model = model.module
     model.eval()
     return task.stabilize_all(loader, model, epoch, args)
示例#9
0
 def run(cls, model, criterion, epoch, args):
     task = cls(model, epoch, args)
     loader, = get_dataset(args, splits=('val_video', ))
     return task.validate_video(loader, model, criterion, epoch, args)