示例#1
0
def prepare_roidb(imdb):
    """
    Enrich the imdb roidb by adding some derived quantities that are useful for training.
    This function computes the maximum overlap, taken over gt boxes, between each RoI and each gt box.
    The class with maximum overlap is also recorded.
    """
    roidb = imdb.roidb
    if not (imdb.name.startswith('coco')):
        sizes = [
            PIL.Image.open(imdb.image_path_at(i)).size
            for i in range(imdb.num_images)
        ]

    for i in range(len(imdb.image_index)):
        roidb[i]['img_id'] = imdb.image_id_at(i)
        roidb[i]['image'] = imdb.image_path_at(i)
        if not (imdb.name.startswith('coco')):
            roidb[i]['width'] = sizes[i][0]
            roidb[i]['height'] = sizes[i][1]
        gt_overlaps = roidb[i]['gt_overlaps'].toarray()
        max_overlaps = gt_overlaps.max(axis=1)
        max_classes = gt_overlaps.argmax(axis=1)
        roidb[i]['max_classes'] = max_classes
        roidb[i]['max_overlaps'] = max_overlaps

        zero_inds = np.where(max_overlaps == 0)[0]
        assert all(max_classes[zero_inds] == 0)
        # max overlap > 0 => class should not be zero (must be a fg class)
        nonzero_inds = np.where(max_overlaps > 0)[0]
        assert all(max_classes[nonzero_inds] != 0)
示例#2
0
def prepare_roidb(imdb):
    """Enrich the imdb's roidb by adding some derived quantities that
    are useful for training. This function precomputes the maximum
    overlap, taken over ground-truth boxes, between each ROI and
    each ground-truth box. The class with maximum overlap is also
    recorded.
    """
    roidb = imdb.roidb
    if not (imdb.name.startswith('coco')):
        sizes = [PIL.Image.open(imdb.image_path_at(i)).size
             for i in range(imdb.num_images)]
    for i in range(len(imdb.image_index)):
        roidb[i]['image'] = imdb.image_path_at(i)
        if not (imdb.name.startswith('coco')):
            roidb[i]['width'] = sizes[i][0]
            roidb[i]['height'] = sizes[i][1]
        # need gt_overlaps as a dense array for argmax
        gt_overlaps = roidb[i]['gt_overlaps'].toarray()
        # max overlap with gt over classes (columns)
        max_overlaps = gt_overlaps.max(axis=1)
        # gt class that had the max overlap
        max_classes = gt_overlaps.argmax(axis=1)
        roidb[i]['max_classes'] = max_classes
        roidb[i]['max_overlaps'] = max_overlaps
        # sanity checks
        # max overlap of 0 => class should be zero (background)
        zero_inds = np.where(max_overlaps == 0)[0]
        assert all(max_classes[zero_inds] == 0)
        # max overlap > 0 => class should not be zero (must be a fg class)
        nonzero_inds = np.where(max_overlaps > 0)[0]
        assert all(max_classes[nonzero_inds] != 0)
示例#3
0
#num_images = 100
#del imdb.image_index[num_images:]
#num_images = 10#len(imdb.image_index)
all_boxes = [[[] for _ in xrange(num_images)]
             for _ in xrange(imdb.num_classes)]

output_dir = get_output_dir(imdb, net)
zl.tic()
# timers
_t = {'im_detect' : Timer(), 'misc' : Timer()}

max_per_image = 50
thresh = 0.7
for i in xrange(num_images):
    # filter out any ground truth boxes
    im_path = imdb.image_path_at(i)
    im_name = im_path.split('/')[-1]
    eb_roi = h5_rois[im_name]
    im = cv2.imread(imdb.image_path_at(i))
    _t['im_detect'].tic()
    #scores, boxes = im_detect(net, im, box_proposals)
    scores, boxes = im_detect(net, im, eb_roi)
    attention = net.blobs['attention'].data.squeeze()
    #net.blobs['attention'].data
    #scores = np.multiply(scores,attention)
    _t['im_detect'].toc()

    _t['misc'].tic()
    # skip j = 0, because it's the background class
    for j in xrange(1, imdb.num_classes):
        inds = np.where(scores[:, j] > thresh)[0]
示例#4
0
        except:
            content = pickle.load(fid, encoding='bytes')

    boxpathList = args.box.split('/')
    save_base = '/'.join(boxpathList[-5:-1])
    save_path = os.path.join('../cache', save_base)
    save_path = os.path.join(save_path, boxpathList[-1].split('.')[0])
    if not os.path.exists(save_path):
        os.makedirs(save_path)
    save_path = '../cache/' + save_path
    imdbname = boxpathList[-5]
    print('getting imdb {:s}'.format(imdbname))
    imdb = get_imdb('voc_2007_test')

    for idx in range(len(imdb.image_index)):
        im = cv2.imread(imdb.image_path_at(idx))
        im = im[:, :, ::-1]
        height, width, depth = im.shape
        dpi = 80
        plt.figure(figsize=(width / dpi, height / dpi), dpi=dpi)
        colors = plt.cm.hsv(np.linspace(0, 1, 21)).tolist()
        plt.imshow(im)  # plot the image for matplotlib
        currentAxis = plt.gca()
        plt.axis('off')
        # scale each detection back up to the image
        # scale = torch.Tensor([rgb_image.shape[1::-1], rgb_image.shape[1::-1]])
        for i in range(20):
            for j in range(len(content[i][idx])):
                score = content[i][idx][j][-1]
                if score > 0.1:
                    label_name = imdb._classes[i]
示例#5
0
 def image_path_at(self, i, domain=Domain.SOURCE):
     """
     Return the absolute path to image i in the domain image sequence.
     """
     imdb = self.get_imdb(domain)
     return imdb.image_path_at(i)
示例#6
0
    if args.save:
        try:
            index = imdb._get_roidb_index_at_size(30)
        except:
            index = imdb._get_roidb_index_at_size(-1)
        if index == -1:
            index = len(imdb.roidbSize)
        print("saving {} imdb annotations to output folder...".format(index))
        print(prefix_path)
        for i in range(index):
            print(roidb[i])
            
            boxes = roidb[i]['boxes']
            if len(boxes) == 0: continue
            #img_path = roidb[i]['image']
            img_path = imdb.image_path_at(i)
            im = cv2.imread(img_path)
            if roidb[i]['flipped']:
                im = im[:, ::-1, :]
            cls = roidb[i]['gt_classes']

            if args.save_box:
                if args.save_noise > 0:
                    for j in range(4):
                        fn = osp.join(prefix_path,"{}_{}_{}.png".format(imdb.name,i,j))
                        n_boxes = boxes + createNoisyBox(30)
                        vis_dets(im,cls,n_boxes,i,fn=fn)
                else:
                    fn = osp.join(prefix_path,"{}_{}.png".format(imdb.name,i))
                    vis_dets(im,cls,boxes,i,fn=fn)
            else:
示例#7
0
def eval():
    cfg_from_file('experiments/cfgs/rfcn_end2end.yml')

    #cfg_from_file('experiments/cfgs/rfcn_end2end_iccv_eb.yml')
    imdb, roidb = combined_roidb('voc_0712_test')

    import cv2

    net =None
    prototxt = 'models/pascal_voc/ResNet-50/rfcn_end2end/test_iccv_rpn.prototxt'
    #model = 'data/rfcn_models/resnet50_rfcn_iter_1200.caffemodel'

    model = 'output/rfcn_end2end/voc_0712_train/resnet50_rfcn_iter_1600.caffemodel'
    #model = 'data/rfcn_models_iccv/eb_resnet50_rfcn_iter_600.caffemodel'
    caffe.set_mode_gpu()
    caffe.set_device(0)
    net = caffe.Net(prototxt, model, caffe.TEST)

    #prototxt = 'models/pascal_voc/ResNet-50/rfcn_end2end/test_iccv_rpn.prototxt'
    ##model = 'data/rfcn_models_iccv/eb_resnet50_rfcn_iter_800.caffemodel'
    #model = 'output/rfcn_end2end/voc_0712_train/resnet50_rfcn_iter_1600.caffemodel'
    #model = 'data/rfcn_models_iccv/eb_resnet50_rfcn_iter_800.caffemodel'
    #net2 = caffe.Net(prototxt, model, caffe.TEST)
    #net.params['conv_new_1_zl'][0].data[...] =  net2.params['conv_new_1_zl'][0].data[...]
    #net.params['conv_new_1_zl'][1].data[...] =  net2.params['conv_new_1_zl'][1].data[...]
    #net2 = None
    net.name = 'resnet50_rfcn_iter_1200'
    num_images = len(imdb.image_index)
    num_images = 100
    del imdb.image_index[num_images:]
    #num_images = 10#len(imdb.image_index)
    all_boxes = [[[] for _ in xrange(num_images)]
                 for _ in xrange(imdb.num_classes)]

    output_dir = get_output_dir(imdb, net)

    # timers
    _t = {'im_detect' : Timer(), 'misc' : Timer()}

    if not cfg.TEST.HAS_RPN:
        roidb = imdb.roidb
    max_per_image = 300
    thresh = 0.0
    for i in xrange(num_images):
        # filter out any ground truth boxes
        if cfg.TEST.HAS_RPN:
            box_proposals = None
        else:
            # The roidb may contain ground-truth rois (for example, if the roidb
            # comes from the training or val split). We only want to evaluate
            # detection on the *non*-ground-truth rois. We select those the rois
            # that have the gt_classes field set to 0, which means there's no
            # ground truth.
            box_proposals = roidb[i]['boxes'][roidb[i]['gt_classes'] == 0]

        im = cv2.imread(imdb.image_path_at(i))
        _t['im_detect'].tic()
        scores, boxes = im_detect(net, im, box_proposals)
        attention = net.blobs['attention'].data.squeeze()
        #net.blobs['attention'].data
        #scores = np.multiply(scores,attention)
        _t['im_detect'].toc()

        _t['misc'].tic()
        # skip j = 0, because it's the background class
        for j in xrange(1, imdb.num_classes):
            inds = np.where(scores[:, j] > thresh)[0]
            cls_scores = scores[inds, j]
            if cfg.TEST.AGNOSTIC:
                cls_boxes = boxes[inds, 1:]
            else:
                cls_boxes = boxes[inds, j*4:(j+1)*4]
            cls_dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])) \
                .astype(np.float32, copy=False)
            keep = nms(cls_dets, cfg.TEST.NMS,force_cpu=True)
            cls_dets = cls_dets[keep, :]
            all_boxes[j][i] = cls_dets
            cls_str = imdb.classes[j]
            for roi in all_boxes[j][i]:
                cv2.putText(im,cls_str,(roi[0],roi[1]),cv2.FONT_HERSHEY_COMPLEX,1.0,(255,0,0),1)
                cv2.rectangle(im,(roi[0],roi[1]),(roi[2],roi[3]),(0,0,255),1)

        # Limit to max_per_image detections *over all classes*

        if max_per_image > 0:
            image_scores = np.hstack([all_boxes[j][i][:, -1]
                                      for j in xrange(1, imdb.num_classes)])
            if len(image_scores) > max_per_image:
                image_thresh = np.sort(image_scores)[-max_per_image]
                for j in xrange(1, imdb.num_classes):
                    keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
                    all_boxes[j][i] = all_boxes[j][i][keep, :]
        #cv2.imshow('vis',im)
        #cv2.waitKey(0)
        _t['misc'].toc()

        print 'im_detect: {:d}/{:d} {:.3f}s {:.3f}s' \
            .format(i + 1, num_images, _t['im_detect'].average_time,
                    _t['misc'].average_time)

    det_file = os.path.join(output_dir, 'detections.pkl')
    with open(det_file, 'wb') as f:
        cPickle.dump(all_boxes, f, cPickle.HIGHEST_PROTOCOL)

    print 'Evaluating detections'
    imdb.evaluate_detections(all_boxes, output_dir)
def eval():
    cfg_from_file('experiments/cfgs/rfcn_end2end_iccv_eb.yml')

    #cfg_from_file('experiments/cfgs/rfcn_end2end_iccv_eb.yml')
    imdb, roidb = combined_roidb('sg_vrd_2016_test')

    import cv2
    #h5f = h5py.File('/media/zawlin/ssd/iccv2017/data/voc/gen_eb.h5',driver='core')
    h5path =  'data/sg_vrd_2016/EB/eb.h5'
    h5f = h5py.File(h5path,driver='core')
    h5_rois = {}

    for i in h5f['test/']:
        data=h5f['test/%s'%i][...].astype(np.float32)
        idx = np.argsort(data[:,-1],axis=0)
        data_sorted = data[idx][::-1]
        data_sorted_idx = np.where((data_sorted[:,2]-data_sorted[:,0]>20) & (data_sorted[:,3]-data_sorted[:,1]>20))
        data_sorted = data_sorted[data_sorted_idx]
        #print data_sorted
        h5_rois[i] = data_sorted[:1000,:4]

    #cfg.TEST.HAS_RPN=False
    net =None
    #prototxt = 'models/pascal_voc/ResNet-50/rfcn_end2end/test_iccv_eb_sigmoid.prototxt'
    prototxt = 'models/sg_vrd/wsd/test_eb_wsddn_s.prototxt'
    #model = 'data/rfcn_models/resnet50_rfcn_iter_1200.caffemodel'

    #model = 'output/rfcn_end2end/voc_0712_train/resnet50_rfcn_iter_16000.caffemodel'
    #model = 'output/rfcn_end2end/voc_0712_train/eb_wsddn_s_iter_5000.caffemodel'
    model = 'output/rfcn_end2end/sg_vrd_2016_train/eb_wsddn_s_iter_9400.caffemodel'
    #model = 'data/rfcn_models/resnet50_rfcn_final.caffemodel'
    #model = 'output/rfcn_end2end/voc_0712_train/resnet50_rfcn_eb_sigx_iter_100000.caffemodel'
    #model = 'data/rfcn_models_iccv/eb_resnet50_rfcn_iter_600.caffemodel'
    caffe.set_mode_gpu()
    caffe.set_device(0)
    net = caffe.Net(prototxt, model, caffe.TEST)

    #prototxt = 'models/pascal_voc/ResNet-50/rfcn_end2end/test_iccv_rpn.prototxt'
    #model = 'data/rfcn_models_iccv/eb_resnet50_rfcn_iter_800.caffemodel'
    #model = 'output/rfcn_end2end/voc_0712_train/resnet50_rfcn_iter_1600.caffemodel'
    #model = 'data/rfcn_models_iccv/eb_resnet50_rfcn_iter_800.caffemodel'
    #net2 = caffe.Net(prototxt, model, caffe.TEST)
    #net.params['conv_new_1_zl'][0].data[...] =  net2.params['conv_new_1_zl'][0].data[...]
    #net.params['conv_new_1_zl'][1].data[...] =  net2.params['conv_new_1_zl'][1].data[...]
    #net2 = None
    net.name = 'resnet50_rfcn_iter_1200'
    num_images = len(imdb.image_index)
    num_images = 100
    del imdb.image_index[num_images:]
    all_boxes = [[[] for _ in xrange(num_images)]
                 for _ in xrange(imdb.num_classes)]

    output_dir = get_output_dir(imdb, net)
    zl.tic()
    # timers
    _t = {'im_detect' : Timer(), 'misc' : Timer()}

    max_per_image =200
    thresh = 0.00001
    cv2.namedWindow('im',0)
    cnt = 0
    for i in xrange(num_images):
        # filter out any ground truth boxes
        im_path = imdb.image_path_at(i)
        im_name = im_path.split('/')[-1]
        eb_roi = h5_rois[im_name]
        im = cv2.imread(imdb.image_path_at(i))
        _t['im_detect'].tic()
        #scores, boxes = im_detect(net, im, box_proposals)
        scores, boxes = im_detect_iccv(net, im, eb_roi)
        #attention = net.blobs['attention'].data.squeeze()
        #net.blobs['attention'].data
        #scores = np.multiply(scores,attention)
        _t['im_detect'].toc()

        _t['misc'].tic()
        # skip j = 0, because it's the background class
        for j in xrange(1, imdb.num_classes):
            if j == 15:
                dfdfd=1
                dfdfd += 1
            inds = np.where(scores[:, j-1] > thresh)[0]
            cls_scores = scores[inds, j-1]
            if cfg.TEST.AGNOSTIC:
                cls_boxes = boxes[inds, 1:]
            else:
                cls_boxes = boxes[inds, j*4:(j+1)*4]
            cls_dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])) \
                .astype(np.float32, copy=False)
            keep = nms(cls_dets, cfg.TEST.NMS,force_cpu=True)
            cls_dets = cls_dets[keep, :]
            all_boxes[j][i] = cls_dets

        # Limit to max_per_image detections *over all classes*

        if max_per_image > 0:
            image_scores = np.hstack([all_boxes[j][i][:, -1]
                                      for j in xrange(1, imdb.num_classes)])
            if len(image_scores) > max_per_image:
                image_thresh = np.sort(image_scores)[-max_per_image]
                for j in xrange(1, imdb.num_classes):
                    keep = np.where(all_boxes[j][i][:, -1] >= image_thresh)[0]
                    all_boxes[j][i] = all_boxes[j][i][keep, :]


        for j in xrange(1, imdb.num_classes):

            cls_str = imdb.classes[j]
            for roi in all_boxes[j][i]:
                cv2.putText(im,cls_str,(roi[0],roi[1]),cv2.FONT_HERSHEY_COMPLEX,1.0,(255,0,0),1)
                cv2.rectangle(im,(roi[0],roi[1]),(roi[2],roi[3]),(0,0,255),1)
        cnt += 1
        cv2.imwrite('/home/zawlin/%d.jpg'%cnt,im)
        cv2.imshow('vis',im)
        cv2.waitKey(0)
        _t['misc'].toc()

        print 'im_detect: {:d}/{:d} {:.3f}s {:.3f}s' \
            .format(i + 1, num_images, _t['im_detect'].average_time,
                    _t['misc'].average_time)

    det_file = os.path.join(output_dir, 'detections.pkl')
    with open(det_file, 'wb') as f:
        cPickle.dump(all_boxes, f, cPickle.HIGHEST_PROTOCOL)

    print 'Evaluating detections'
    imdb.evaluate_detections(all_boxes, output_dir)
    print zl.toc()
def gen_recall():
    cfg_from_file('experiments/cfgs/rfcn_end2end_iccv_eb.yml')
    #cfg_from_file('experiments/cfgs/rfcn_end2end_iccv_eb.yml')
    imdb, roidb = combined_roidb('sg_vrd_2016_test')

    m = h5py.File('/home/zawlin/Dropbox/proj/sg_vrd_meta.h5', 'r', 'core')
    import cv2
    h5path =  'data/sg_vrd_2016/EB/eb.h5'
    h5f = h5py.File(h5path,driver='core')
    h5_rois = {}

    for i in h5f['test/']:
        data=h5f['test/%s'%i][...].astype(np.float32)
        idx = np.argsort(data[:,-1],axis=0)
        data_sorted = data[idx][::-1]
        data_sorted_idx = np.where((data_sorted[:,2]-data_sorted[:,0]>20) & (data_sorted[:,3]-data_sorted[:,1]>20))
        data_sorted = data_sorted[data_sorted_idx]
        #print data_sorted
        h5_rois[i] = data_sorted[:4000,:4]

    #cfg.TEST.HAS_RPN=False
    net =None
    #prototxt = 'models/pascal_voc/ResNet-50/rfcn_end2end/test_iccv_eb_sigmoid.prototxt'
    prototxt = 'models/sg_vrd/wsd/test_eb_wsddn_s.prototxt'
    #model = 'data/rfcn_models/resnet50_rfcn_iter_1200.caffemodel'

    #model = 'output/rfcn_end2end/voc_0712_train/resnet50_rfcn_iter_16000.caffemodel'
    #model = 'output/rfcn_end2end/voc_0712_train/eb_wsddn_s_iter_5000.caffemodel'
    model = 'output/rfcn_end2end/sg_vrd_2016_train/eb_wsddn_s_iter_11000.caffemodel'
    #model = 'data/rfcn_models/resnet50_rfcn_final.caffemodel'
    #model = 'output/rfcn_end2end/voc_0712_train/resnet50_rfcn_eb_sigx_iter_100000.caffemodel'
    #model = 'data/rfcn_models_iccv/eb_resnet50_rfcn_iter_600.caffemodel'
    caffe.set_mode_gpu()
    caffe.set_device(0)
    net = caffe.Net(prototxt, model, caffe.TEST)

    #prototxt = 'models/pascal_voc/ResNet-50/rfcn_end2end/test_iccv_rpn.prototxt'
    #model = 'data/rfcn_models_iccv/eb_resnet50_rfcn_iter_800.caffemodel'
    #model = 'output/rfcn_end2end/voc_0712_train/resnet50_rfcn_iter_1600.caffemodel'
    #model = 'data/rfcn_models_iccv/eb_resnet50_rfcn_iter_800.caffemodel'
    #net2 = caffe.Net(prototxt, model, caffe.TEST)
    #net.params['conv_new_1_zl'][0].data[...] =  net2.params['conv_new_1_zl'][0].data[...]
    #net.params['conv_new_1_zl'][1].data[...] =  net2.params['conv_new_1_zl'][1].data[...]
    #net2 = None
    net.name = 'resnet50_rfcn_iter_1200'
    num_images = len(imdb.image_index)
    #num_images = 100
    #del imdb.image_index[num_images:]
    all_boxes = [[[] for _ in xrange(num_images)]
                 for _ in xrange(imdb.num_classes)]

    output_dir = get_output_dir(imdb, net)
    zl.tic()
    # timers
    _t = {'im_detect' : Timer(), 'misc' : Timer()}

    max_per_image =20
    thresh = 0.00001
    cv2.namedWindow('im',0)
    cnt = 0
    mat_pred_label = []
    mat_pred_conf  = []
    mat_pred_bb = []
    mat_gt_label = []
    mat_gt_bb = []
    for i in xrange(num_images):
        cnt+=1
        # filter out any ground truth boxes
        im_path = imdb.image_path_at(i)
        im_name = im_path.split('/')[-1]
        imid = im_name[:-4]
        eb_roi = h5_rois[im_name]
        im = cv2.imread(imdb.image_path_at(i))
        _t['im_detect'].tic()
        scores, boxes = im_detect_iccv(net, im, eb_roi)
        _t['im_detect'].toc()

        _t['misc'].tic()
        boxes_tosort = []
        for j in xrange(1, 101):
            inds = np.where(scores[:, j-1] > 0.00001)[0]
            cls_scores = scores[inds, j-1]
            cls_boxes = boxes[inds, 1:]
            #cls_boxes = boxes[inds, j * 4:(j + 1) * 4]
            # cls_boxes = boxes[inds]
            cls_dets = np.hstack((cls_boxes, cls_scores[:, np.newaxis])) \
                .astype(np.float32, copy=False)
            keep = nms(cls_dets, .7, force_cpu=True)  # nms threshold
            # keep = nms_fast(cls_dets,.3)
            cls_dets = cls_dets[keep, :]
            boxes_tosort.append(cls_dets)
        mat_pred_label_i = []
        mat_pred_conf_i = []
        mat_pred_bb_i = []
        for j in xrange(len(boxes_tosort)):
            cls_dets = boxes_tosort[j]

            idx = np.argsort(cls_dets[:,-1],axis=0)[::-1]
            cls_dets = cls_dets[idx]
            if cls_dets.shape[0]>max_per_image:
                cls_dets = cls_dets[:max_per_image,:]
            for di in xrange(cls_dets.shape[0]):
                #    print 'here'
                di = cls_dets[di]
                score = di[-1]
                cls_idx = j + 1
                cls_name = zl.idx2name_cls(m,cls_idx)
                #cls_name = str(m['meta/cls/idx2name/' + str(cls_idx)][...])
                if score > 1:
                    score = 1
                if score < thresh:
                    continue
                cv2.rectangle(im,(di[0],di[1]),(di[2],di[3]),(255,0,0),2)
                x, y = int(di[0]), int(di[1])
                if x < 10:
                    x = 15
                if y < 10:
                    y = 15
                mat_pred_label_i.append(cls_idx)
                mat_pred_conf_i.append(score)
                mat_pred_bb_i.append([di[0],di[1],di[2],di[3]])
                cv2.putText(im,cls_name,(x,y),cv2.FONT_HERSHEY_SIMPLEX,1.0,(0,0,255),2)
                res_line = '%s %d %f %d %d %d %d'%(imid,cls_idx,score,di[0],di[1],di[2],di[3])
        mat_pred_label.append(mat_pred_label_i)
        mat_pred_conf.append(mat_pred_conf_i)
        mat_pred_bb.append(mat_pred_bb_i)
        obj_boxes = m['gt/test/%s/obj_boxes'%imid][...]
        sub_boxes = m['gt/test/%s/sub_boxes'%imid][...]
        rlp_labels = m['gt/test/%s/rlp_labels'%imid][...]
        mat_gt_label_i = []
        mat_gt_bb_i = []
        mat_gt_i = []
        for gti in xrange(obj_boxes.shape[0]):
            mat_gt_i.append([rlp_labels[gti,0],sub_boxes[gti,0],sub_boxes[gti,1],sub_boxes[gti,2],sub_boxes[gti,3]])
            mat_gt_i.append([rlp_labels[gti,2],obj_boxes[gti,0],obj_boxes[gti,1],obj_boxes[gti,2],obj_boxes[gti,3]])
        if len(mat_gt_i)>0:
            mat_gt_i = np.array(mat_gt_i)
            mat_gt_i=zl.unique_arr(mat_gt_i)
            for gti in xrange(mat_gt_i.shape[0]):
                mat_gt_bb_i.append(mat_gt_i[gti,1:])
                mat_gt_label_i.append(mat_gt_i[gti,0])
        mat_gt_label.append(mat_gt_label_i)
        mat_gt_bb.append(mat_gt_bb_i)
        #matlab_gt.append(matlab_gt_i)
        #now get gt

        cv2.imshow('im',im)
        if cv2.waitKey(0) == 27:
            exit(0)
        _t['misc'].toc()

        print 'im_detect: {:d} {:.3f}s {:.3f}s' \
            .format(cnt, _t['im_detect'].average_time,
                    _t['misc'].average_time)

    sio.savemat('output/sg_vrd_objs.mat', {'pred_bb': mat_pred_bb,
                                           'pred_conf':mat_pred_conf,
                                           'pred_label':mat_pred_label,
                                           'gt_bb':mat_gt_bb,
                                           'gt_label':mat_gt_label
                                           })