示例#1
0
def submit_cv_ensemble(ensemble, output_file):
    thresholds = []
    tests = []
    for net, val, train in ensemble:
        y_val = mlb.transform(train['tags'].str.split()).astype(np.float32)
        threshold = find_best_threshold.optimise_f2_thresholds_fast(
            y_val, net['train'])
        thresholds.append(threshold)
        test = net['test']
        tests.append(test)

    threshold_avg = np.average(np.stack(thresholds, axis=0), axis=0)
    test_avg = np.average(np.stack(tests, axis=0), axis=0)

    test_images = list(
        map(lambda path: path[:-len('.jpg')], os.listdir(paths.test_jpg)))
    test_avg[test_avg > threshold_avg] = 1
    test_avg[test_avg <= threshold_avg] = 0

    predictions = mlb.inverse_transform(test_avg)
    test_results = zip(predictions, test_images)

    with open(paths.submissions + output_file, 'w') as submission:
        submission.write('image_name,tags\n')
        for tags, target in test_results:
            output = target + ',' + ' '.join(tags)
            submission.write("%s\n" % output)

        print('Submission ready!')
示例#2
0
def do(model_fold):
    model, i = model_fold
    net = np.load(paths.predictions + '{}-split_{}.npz'.format(model, i))
    train_idx, val_idx = split[i]
    train_predictions = net['train']
    train_true = mlb.transform(labels_df.ix[train_idx]['tags'].str.split()).astype(np.float32)

    thresholds = []
    for train in train_predictions:
        threshold = optimise_f2_thresholds_fast(train_true, train, verbose=True)
        thresholds.append(threshold)

    thresholds = np.stack(thresholds, axis=1)
    np.save(paths.thresholds + '{}-split_{}'.format(model, i), thresholds)
    print('Saved {}-split_{}'.format(model, i))
示例#3
0
def train_net(train, val, unsupervised, model, name):
    unsupervised_initialization = mlb.transform(unsupervised['tags'].str.split()).astype(np.float32)
    unsupervised_samples = unsupervised['image_name'].as_matrix()

    unsupervised_initialization = unsupervised_initialization[:len(unsupervised_initialization)//2*3]
    unsupervised_samples = unsupervised_samples[:len(unsupervised_samples)//2*3]

    transformations_train = transforms.apply_chain([
        transforms.random_fliplr(),
        transforms.random_flipud(),
        transforms.augment(),
        torchvision.transforms.ToTensor()
    ])

    transformations_val = transforms.apply_chain([
        torchvision.transforms.ToTensor()
    ])

    dset_train_unsupervised = KaggleAmazonUnsupervisedDataset(
        unsupervised_samples,
        paths.test_jpg,
        '.jpg',
        transformations_train,
        transformations_val,
        unsupervised_initialization
    )

    dset_train_supervised = KaggleAmazonJPGDataset(train, paths.train_jpg, transformations_train, divide=False)
    dset_train = KaggleAmazonSemiSupervisedDataset(dset_train_supervised, dset_train_unsupervised, None, indices=False)

    train_loader = DataLoader(dset_train,
                              batch_size=64,
                              shuffle=True,
                              num_workers=10,
                              pin_memory=True)

    dset_val = KaggleAmazonJPGDataset(val, paths.train_jpg, transformations_val, divide=False)
    val_loader = DataLoader(dset_val,
                            batch_size=64,
                            num_workers=10,
                            pin_memory=True)

    ignored_params = list(map(id, chain(
        model.classifier.parameters(),
        model.layer1.parameters(),
        model.layer2.parameters(),
        model.layer3.parameters(),
        model.layer4.parameters()
    )))
    base_params = filter(lambda p: id(p) not in ignored_params,
                         model.parameters())

    optimizer = optim.Adam([
        {'params': base_params},
        {'params': model.layer1.parameters()},
        {'params': model.layer2.parameters()},
        {'params': model.layer3.parameters()},
        {'params': model.layer4.parameters()},
        {'params': model.classifier.parameters()}
    ], lr=0, weight_decay=0.0001)

    trainer = ModuleTrainer(model)

    def schedule(current_epoch, current_lrs, **logs):
        lrs = [1e-3, 1e-4, 0.5e-4, 1e-5, 0.5e-5]
        epochs = [0, 1, 6, 8, 12]

        for lr, epoch in zip(lrs, epochs):
            if current_epoch >= epoch:
                current_lrs[5] = lr
                if current_epoch >= 2:
                    current_lrs[4] = lr * 1
                    current_lrs[3] = lr * 1
                    current_lrs[2] = lr * 1
                    current_lrs[1] = lr * 1
                    current_lrs[0] = lr * 0.1

        return current_lrs

    trainer.set_callbacks([
        ModelCheckpoint(
            paths.models,
            name,
            save_best_only=False,
            saving_strategy=lambda epoch: True
        ),
        CSVLogger(paths.logs + name),
        LearningRateScheduler(schedule),
        SemiSupervisedUpdater(trainer, dset_train_unsupervised, start_epoch=6, momentum=0.25)
    ])

    trainer.compile(loss=nn.BCELoss(),
                    optimizer=optimizer)

    trainer.fit_loader(train_loader,
                       val_loader,
                       nb_epoch=16,
                       verbose=1,
                       cuda_device=0)
示例#4
0
            net = np.load(paths.predictions +
                          '{}-split_{}.npz'.format(model_name, i))
            thresholds = np.load(paths.thresholds +
                                 '{}-split_{}.npy'.format(model_name, i))

            thresholds_all.append(np.average(thresholds, axis=1))
            train = net['train']
            val = net['val']
            test = net['test']

            x_train_all.append(train)
            x_val_all.append(val)
            x_test_all.append(test)

            labels_train = mlb.transform(
                labels_df.ix[labels_train]['tags'].str.split()).astype(
                    np.float32)
            labels_val = mlb.transform(
                labels_df.ix[labels_val]['tags'].str.split()).astype(
                    np.float32)

            labels_train_all.append(labels_train)
            labels_val_all.append(labels_val)

        train = x_train_all = np.concatenate(x_train_all, axis=1)
        val = x_val_all = np.concatenate(x_val_all, axis=1)
        # Test gets stacked over folds instead of concat
        test = x_test_all = np.stack(x_test_all, axis=0)

        # Thresholds get averaged as comparison
        thresholds_average = np.average(np.stack(thresholds_all, axis=0),