def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_schedule_loss = AverageMeter() self.train_losses = AverageMeter() self.train_loss_heatmap = AverageMeter() self.train_loss_associate = AverageMeter() self.val_losses = AverageMeter() self.val_loss_heatmap = AverageMeter() self.val_loss_associate = AverageMeter() self.pose_visualizer = PoseVisualizer(configer) self.pose_loss_manager = LossManager(configer) self.pose_model_manager = ModelManager(configer) self.pose_data_loader = DataLoader(configer) self.heatmap_generator = HeatmapGenerator(configer) self.paf_generator = PafGenerator(configer) self.pose_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self.runner_state = dict() self._init_model()
def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.pose_vis = PoseVisualizer(configer) self.pose_model_manager = ModelManager(configer) self.pose_data_loader = DataLoader(configer) self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda') self.pose_net = None self._init_model()
def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.pose_visualizer = PoseVisualizer(configer) self.pose_parser = PoseParser(configer) self.pose_model_manager = PoseModelManager(configer) self.pose_data_loader = DataLoader(configer) self.heatmap_generator = HeatmapGenerator(configer) self.paf_generator = PafGenerator(configer) self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda') self.pose_net = None self._init_model()
def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = DictAverageMeter() self.val_losses = DictAverageMeter() self.pose_visualizer = PoseVisualizer(configer) self.pose_model_manager = ModelManager(configer) self.pose_data_loader = DataLoader(configer) self.pose_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self.runner_state = dict() self._init_model()
class OpenPose(object): """ The class for Pose Estimation. Include train, val, test & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_schedule_loss = AverageMeter() self.train_losses = AverageMeter() self.train_loss_heatmap = AverageMeter() self.train_loss_associate = AverageMeter() self.val_losses = AverageMeter() self.val_loss_heatmap = AverageMeter() self.val_loss_associate = AverageMeter() self.pose_visualizer = PoseVisualizer(configer) self.pose_loss_manager = LossManager(configer) self.pose_model_manager = ModelManager(configer) self.pose_data_loader = DataLoader(configer) self.heatmap_generator = HeatmapGenerator(configer) self.paf_generator = PafGenerator(configer) self.pose_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self.runner_state = dict() self._init_model() def _init_model(self): self.pose_net = self.pose_model_manager.multi_pose_detector() self.pose_net = RunnerHelper.load_net(self, self.pose_net) self.optimizer, self.scheduler = Trainer.init(self, self._get_parameters()) self.train_loader = self.pose_data_loader.get_trainloader() self.val_loader = self.pose_data_loader.get_valloader() self.weights = self.configer.get('network', 'loss_weights') self.mse_loss = self.pose_loss_manager.get_pose_loss() def _get_parameters(self): lr_1 = [] lr_2 = [] params_dict = dict(self.pose_net.named_parameters()) for key, value in params_dict.items(): if 'backbone' not in key: lr_2.append(value) else: lr_1.append(value) params = [ { 'params': lr_1, 'lr': self.configer.get('lr', 'base_lr'), 'weight_decay': 0.0 }, { 'params': lr_2, 'lr': self.configer.get('lr', 'base_lr'), 'weight_decay': 0.0 }, ] return params def train(self): """ Train function of every epoch during train phase. """ self.pose_net.train() start_time = time.time() # Adjust the learning rate after every epoch. self.runner_state['epoch'] += 1 self.scheduler.step(self.train_schedule_loss.avg, epoch=self.configer.get('epoch')) self.train_schedule_loss.reset() # data_tuple: (inputs, heatmap, maskmap, vecmap) for i, data_dict in enumerate(self.train_loader): inputs = data_dict['img'] maskmap = data_dict['maskmap'] heatmap = data_dict['heatmap'] vecmap = data_dict['vecmap'] self.data_time.update(time.time() - start_time) # Change the data type. inputs, heatmap, maskmap, vecmap = RunnerHelper.to_device( self, inputs, heatmap, maskmap, vecmap) # Forward pass. paf_out, heatmap_out = self.pose_net(inputs) # Compute the loss of the train batch & backward. loss_heatmap = self.mse_loss(heatmap_out, heatmap, mask=maskmap, weights=self.weights) loss_associate = self.mse_loss(paf_out, vecmap, mask=maskmap, weights=self.weights) loss = 2.0 * loss_heatmap + loss_associate self.train_losses.update(loss.item(), inputs.size(0)) self.train_schedule_loss.update(loss.item(), inputs.size(0)) self.train_loss_heatmap.update(loss_heatmap.item(), inputs.size(0)) self.train_loss_associate.update(loss_associate.item(), inputs.size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['iters'] += 1 # Print the log info & reset the states. if self.runner_state['iters'] % self.configer.get( 'solver', 'display_iter') == 0: Log.info('Loss Heatmap:{}, Loss Asso: {}'.format( self.train_loss_heatmap.avg, self.train_loss_associate.avg)) Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.runner_state['epoch'], self.runner_state['iters'], self.configer.get('solver', 'display_iter'), RunnerHelper.get_lr(self.optimizer), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() self.train_loss_heatmap.reset() self.train_loss_associate.reset() if self.configer.get('lr', 'metric') == 'iters' \ and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'): break # Check to val the current model. if self.runner_state['iters'] % self.configer.get( 'solver', 'test_interval') == 0: self.val() def val(self): """ Validation function during the train phase. """ self.pose_net.eval() start_time = time.time() with torch.no_grad(): for i, data_dict in enumerate(self.val_loader): inputs = data_dict['img'] maskmap = data_dict['maskmap'] heatmap = data_dict['heatmap'] vecmap = data_dict['vecmap'] # Change the data type. inputs, heatmap, maskmap, vecmap = RunnerHelper.to_device( self, inputs, heatmap, maskmap, vecmap) # Forward pass. paf_out, heatmap_out = self.pose_net(inputs) # Compute the loss of the val batch. loss_heatmap = self.mse_loss(heatmap_out[-1], heatmap, maskmap) loss_associate = self.mse_loss(paf_out[-1], vecmap, maskmap) loss = 2.0 * loss_heatmap + loss_associate self.val_losses.update(loss.item(), inputs.size(0)) self.val_loss_heatmap.update(loss_heatmap.item(), inputs.size(0)) self.val_loss_associate.update(loss_associate.item(), inputs.size(0)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['val_loss'] = self.val_losses.avg RunnerHelper.save_net(self, self.pose_net, val_loss=self.val_losses.avg) Log.info('Loss Heatmap:{}, Loss Asso: {}'.format( self.val_loss_heatmap.avg, self.val_loss_associate.avg)) # Print the log info & reset the states. Log.info( 'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) self.batch_time.reset() self.val_losses.reset() self.val_loss_heatmap.reset() self.val_loss_associate.reset() self.pose_net.train()
class OpenPoseTest(object): def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.pose_visualizer = PoseVisualizer(configer) self.pose_parser = PoseParser(configer) self.pose_model_manager = PoseModelManager(configer) self.pose_data_loader = DataLoader(configer) self.heatmap_generator = HeatmapGenerator(configer) self.paf_generator = PafGenerator(configer) self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda') self.pose_net = None self._init_model() def _init_model(self): self.pose_net = self.pose_model_manager.multi_pose_detector() self.pose_net = RunnerHelper.load_net(self, self.pose_net) self.pose_net.eval() def _get_blob(self, ori_image, scale=None): assert scale is not None image = self.blob_helper.make_input(image=ori_image, scale=scale) b, c, h, w = image.size() border_hw = [h, w] if self.configer.exists('test', 'fit_stride'): stride = self.configer.get('test', 'fit_stride') pad_w = 0 if (w % stride == 0) else stride - (w % stride) # right pad_h = 0 if (h % stride == 0) else stride - (h % stride) # down expand_image = torch.zeros((b, c, h + pad_h, w + pad_w)).to(image.device) expand_image[:, :, 0:h, 0:w] = image image = expand_image return image, border_hw def __test_img(self, image_path, json_path, raw_path, vis_path): Log.info('Image Path: {}'.format(image_path)) ori_image = ImageHelper.read_image(image_path, tool=self.configer.get('data', 'image_tool'), mode=self.configer.get('data', 'input_mode')) ori_width, ori_height = ImageHelper.get_size(ori_image) ori_img_bgr = ImageHelper.get_cv2_bgr(ori_image, mode=self.configer.get('data', 'input_mode')) heatmap_avg = np.zeros((ori_height, ori_width, self.configer.get('network', 'heatmap_out'))) paf_avg = np.zeros((ori_height, ori_width, self.configer.get('network', 'paf_out'))) multiplier = [scale * self.configer.get('test', 'input_size')[1] / ori_height for scale in self.configer.get('test', 'scale_search')] stride = self.configer.get('network', 'stride') for i, scale in enumerate(multiplier): image, border_hw = self._get_blob(ori_image, scale=scale) with torch.no_grad(): paf_out_list, heatmap_out_list = self.pose_net(image) paf_out = paf_out_list[-1] heatmap_out = heatmap_out_list[-1] # extract outputs, resize, and remove padding heatmap = heatmap_out.squeeze(0).cpu().numpy().transpose(1, 2, 0) heatmap = cv2.resize(heatmap, None, fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) heatmap = cv2.resize(heatmap[:border_hw[0], :border_hw[1]], (ori_width, ori_height), interpolation=cv2.INTER_CUBIC) paf = paf_out.squeeze(0).cpu().numpy().transpose(1, 2, 0) paf = cv2.resize(paf, None, fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC) paf = cv2.resize(paf[:border_hw[0], :border_hw[1]], (ori_width, ori_height), interpolation=cv2.INTER_CUBIC) heatmap_avg = heatmap_avg + heatmap / len(multiplier) paf_avg = paf_avg + paf / len(multiplier) all_peaks = self.__extract_heatmap_info(heatmap_avg) special_k, connection_all = self.__extract_paf_info(ori_img_bgr, paf_avg, all_peaks) subset, candidate = self.__get_subsets(connection_all, special_k, all_peaks) json_dict = self.__get_info_tree(ori_img_bgr, subset, candidate) image_canvas = self.pose_parser.draw_points(ori_img_bgr.copy(), json_dict) image_canvas = self.pose_parser.link_points(image_canvas, json_dict) ImageHelper.save(image_canvas, vis_path) ImageHelper.save(ori_img_bgr, raw_path) Log.info('Json Save Path: {}'.format(json_path)) JsonHelper.save_file(json_dict, json_path) def __get_info_tree(self, image_raw, subset, candidate): json_dict = dict() height, width, _ = image_raw.shape json_dict['image_height'] = height json_dict['image_width'] = width object_list = list() for n in range(len(subset)): if subset[n][-1] < self.configer.get('res', 'num_threshold'): continue if subset[n][-2] / subset[n][-1] < self.configer.get('res', 'avg_threshold'): continue object_dict = dict() object_dict['kpts'] = np.zeros((self.configer.get('data', 'num_kpts'), 3)).tolist() for j in range(self.configer.get('data', 'num_kpts')): index = subset[n][j] if index == -1: object_dict['kpts'][j][0] = -1 object_dict['kpts'][j][1] = -1 object_dict['kpts'][j][2] = -1 else: object_dict['kpts'][j][0] = candidate[index.astype(int)][0] object_dict['kpts'][j][1] = candidate[index.astype(int)][1] object_dict['kpts'][j][2] = 1 object_dict['score'] = subset[n][-2] object_list.append(object_dict) json_dict['objects'] = object_list return json_dict def __extract_heatmap_info(self, heatmap_avg): all_peaks = [] peak_counter = 0 for part in range(self.configer.get('data', 'num_kpts')): map_ori = heatmap_avg[:, :, part] map_gau = gaussian_filter(map_ori, sigma=3) map_left = np.zeros(map_gau.shape) map_left[1:, :] = map_gau[:-1, :] map_right = np.zeros(map_gau.shape) map_right[:-1, :] = map_gau[1:, :] map_up = np.zeros(map_gau.shape) map_up[:, 1:] = map_gau[:, :-1] map_down = np.zeros(map_gau.shape) map_down[:, :-1] = map_gau[:, 1:] peaks_binary = np.logical_and.reduce( (map_gau >= map_left, map_gau >= map_right, map_gau >= map_up, map_gau >= map_down, map_gau > self.configer.get('res', 'part_threshold'))) peaks = zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]) # note reverse peaks = list(peaks) ''' del_flag = [0 for i in range(len(peaks))] for i in range(len(peaks)): if del_flag[i] == 0: for j in range(i+1, len(peaks)): if max(abs(peaks[i][0] - peaks[j][0]), abs(peaks[i][1] - peaks[j][1])) <= 6: del_flag[j] = 1 new_peaks = list() for i in range(len(peaks)): if del_flag[i] == 0: new_peaks.append(peaks[i]) peaks = new_peaks ''' peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks] ids = range(peak_counter, peak_counter + len(peaks)) peaks_with_score_and_id = [peaks_with_score[i] + (ids[i],) for i in range(len(ids))] all_peaks.append(peaks_with_score_and_id) peak_counter += len(peaks) return all_peaks def __extract_paf_info(self, img_raw, paf_avg, all_peaks): connection_all = [] special_k = [] mid_num = self.configer.get('res', 'mid_point_num') for k in range(len(self.configer.get('details', 'limb_seq'))): score_mid = paf_avg[:, :, [k*2, k*2+1]] candA = all_peaks[self.configer.get('details', 'limb_seq')[k][0] - 1] candB = all_peaks[self.configer.get('details', 'limb_seq')[k][1] - 1] nA = len(candA) nB = len(candB) if nA != 0 and nB != 0: connection_candidate = [] for i in range(nA): for j in range(nB): vec = np.subtract(candB[j][:2], candA[i][:2]) norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) + 1e-9 vec = np.divide(vec, norm) startend = zip(np.linspace(candA[i][0], candB[j][0], num=mid_num), np.linspace(candA[i][1], candB[j][1], num=mid_num)) startend = list(startend) vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0] for I in range(len(startend))]) vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1] for I in range(len(startend))]) score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1]) score_with_dist_prior = sum(score_midpts) / len(score_midpts) score_with_dist_prior += min(0.5 * img_raw.shape[0] / norm - 1, 0) num_positive = len(np.nonzero(score_midpts > self.configer.get('res', 'limb_threshold'))[0]) criterion1 = num_positive > int(self.configer.get('res', 'limb_pos_ratio') * len(score_midpts)) criterion2 = score_with_dist_prior > 0 if criterion1 and criterion2: connection_candidate.append( [i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]]) connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True) connection = np.zeros((0, 5)) for c in range(len(connection_candidate)): i, j, s = connection_candidate[c][0:3] if i not in connection[:, 3] and j not in connection[:, 4]: connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]]) if len(connection) >= min(nA, nB): break connection_all.append(connection) else: special_k.append(k) connection_all.append([]) return special_k, connection_all def __get_subsets(self, connection_all, special_k, all_peaks): # last number in each row is the total parts number of that person # the second last number in each row is the score of the overall configuration subset = -1 * np.ones((0, self.configer.get('data', 'num_kpts') + 2)) candidate = np.array([item for sublist in all_peaks for item in sublist]) for k in self.configer.get('details', 'mini_tree'): if k not in special_k: partAs = connection_all[k][:, 0] partBs = connection_all[k][:, 1] indexA, indexB = np.array(self.configer.get('details', 'limb_seq')[k]) - 1 for i in range(len(connection_all[k])): # = 1:size(temp,1) found = 0 subset_idx = [-1, -1] for j in range(len(subset)): # 1:size(subset,1): if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]: subset_idx[found] = j found += 1 if found == 1: j = subset_idx[0] if (subset[j][indexB] != partBs[i]): subset[j][indexB] = partBs[i] subset[j][-1] += 1 subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] elif found == 2: # if found 2 and disjoint, merge them j1, j2 = subset_idx membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2] if len(np.nonzero(membership == 2)[0]) == 0: # merge subset[j1][:-2] += (subset[j2][:-2] + 1) subset[j1][-2:] += subset[j2][-2:] subset[j1][-2] += connection_all[k][i][2] subset = np.delete(subset, j2, 0) else: # as like found == 1 subset[j1][indexB] = partBs[i] subset[j1][-1] += 1 subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2] # if find no partA in the subset, create a new subset elif not found: row = -1 * np.ones(self.configer.get('data', 'num_kpts') + 2) row[indexA] = partAs[i] row[indexB] = partBs[i] row[-1] = 2 row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2] subset = np.vstack([subset, row]) return subset, candidate def debug(self, vis_dir): for i, data_dict in enumerate(self.pose_data_loader.get_trainloader()): inputs = data_dict['img'] maskmap = data_dict['maskmap'] heatmap = data_dict['heatmap'] vecmap = data_dict['vecmap'] for j in range(inputs.size(0)): count = count + 1 if count > 10: exit(1) Log.info(heatmap.size()) image_bgr = self.blob_helper.tensor2bgr(inputs[j]) mask_canvas = maskmap[j].repeat(3, 1, 1).numpy().transpose(1, 2, 0) mask_canvas = (mask_canvas * 255).astype(np.uint8) mask_canvas = cv2.resize(mask_canvas, (0, 0), fx=self.configer.get('network', 'stride'), fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC) image_bgr = cv2.addWeighted(image_bgr, 0.6, mask_canvas, 0.4, 0) heatmap_avg = heatmap[j].numpy().transpose(1, 2, 0) heatmap_avg = cv2.resize(heatmap_avg, (0, 0), fx=self.configer.get('network', 'stride'), fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC) paf_avg = vecmap[j].numpy().transpose(1, 2, 0) paf_avg = cv2.resize(paf_avg, (0, 0), fx=self.configer.get('network', 'stride'), fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC) self.pose_visualizer.vis_peaks(heatmap_avg, image_bgr) self.pose_visualizer.vis_paf(paf_avg, image_bgr) all_peaks = self.__extract_heatmap_info(heatmap_avg) special_k, connection_all = self.__extract_paf_info(image_bgr, paf_avg, all_peaks) subset, candidate = self.__get_subsets(connection_all, special_k, all_peaks) json_dict = self.__get_info_tree(image_bgr, subset, candidate) image_canvas = self.pose_parser.draw_points(image_bgr, json_dict) image_canvas = self.pose_parser.link_points(image_canvas, json_dict) cv2.imwrite(os.path.join(vis_dir, '{}_{}_vis.png'.format(i, j)), image_canvas) cv2.imshow('main', image_canvas) cv2.waitKey()
class OpenPose(object): """ The class for Pose Estimation. Include train, val, test & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = DictAverageMeter() self.val_losses = DictAverageMeter() self.pose_visualizer = PoseVisualizer(configer) self.pose_model_manager = ModelManager(configer) self.pose_data_loader = DataLoader(configer) self.pose_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self.runner_state = dict() self._init_model() def _init_model(self): self.pose_net = self.pose_model_manager.get_multi_pose_model() self.pose_net = RunnerHelper.load_net(self, self.pose_net) self.optimizer, self.scheduler = Trainer.init( self._get_parameters(), self.configer.get('solver')) self.train_loader = self.pose_data_loader.get_trainloader() self.val_loader = self.pose_data_loader.get_valloader() self.pose_loss = self.pose_model_manager.get_pose_loss() def _get_parameters(self): lr_1 = [] lr_2 = [] params_dict = dict(self.pose_net.named_parameters()) for key, value in params_dict.items(): if 'backbone' not in key: lr_2.append(value) else: lr_1.append(value) params = [ { 'params': lr_1, 'lr': self.configer.get('solver', 'lr')['base_lr'], 'weight_decay': 0.0 }, { 'params': lr_2, 'lr': self.configer.get('solver', 'lr')['base_lr'], 'weight_decay': 0.0 }, ] return params def train(self): """ Train function of every epoch during train phase. """ self.pose_net.train() start_time = time.time() # Adjust the learning rate after every epoch. self.runner_state['epoch'] += 1 for i, data_dict in enumerate(self.train_loader): Trainer.update(self, backbone_list=(0, ), solver_dict=self.configer.get('solver')) self.data_time.update(time.time() - start_time) # Forward pass. out = self.pose_net(data_dict) # Compute the loss of the train batch & backward. loss_dict = self.pose_loss(out) loss = loss_dict['loss'] self.train_losses.update( {key: loss.item() for key, loss in loss_dict.items()}, data_dict['img'].size(0)) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['iters'] += 1 # Print the log info & reset the states. if self.runner_state['iters'] % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {4}\tLoss = {3}\n'.format( self.runner_state['epoch'], self.runner_state['iters'], self.configer.get('solver', 'display_iter'), self.train_losses.info(), RunnerHelper.get_lr(self.optimizer), batch_time=self.batch_time, data_time=self.data_time)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() if self.configer.get('solver', 'lr')['metric'] == 'iters' \ and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'): break # Check to val the current model. if self.runner_state['iters'] % self.configer.get( 'solver', 'test_interval') == 0: self.val() def val(self): """ Validation function during the train phase. """ self.pose_net.eval() start_time = time.time() with torch.no_grad(): for i, data_dict in enumerate(self.val_loader): # Forward pass. out = self.pose_net(data_dict) # Compute the loss of the val batch. loss_dict = self.pose_loss(out) self.val_losses.update( {key: loss.item() for key, loss in loss_dict.items()}, data_dict['img'].size(0)) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['val_loss'] = self.val_losses.avg['loss'] RunnerHelper.save_net(self, self.pose_net, val_loss=self.val_losses.avg['loss']) # Print the log info & reset the states. Log.info( 'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {0}\n'.format(self.val_losses.info(), batch_time=self.batch_time)) self.batch_time.reset() self.val_losses.reset() self.pose_net.train()
class ConvPoseMachineTest(object): def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.pose_vis = PoseVisualizer(configer) self.pose_model_manager = ModelManager(configer) self.pose_data_loader = DataLoader(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.pose_net = None self._init_model() def _init_model(self): self.pose_net = self.pose_model_manager.multi_pose_detector() self.pose_net = RunnerHelper.load_net(self, self.pose_net) self.pose_net.eval() def __test_img(self, image_path, save_path): Log.info('Image Path: {}'.format(image_path)) ori_image = ImageHelper.read_image( image_path, tool=self.configer.get('data', 'image_tool'), mode=self.configer.get('data', 'input_mode')) ori_width, ori_height = ImageHelper.get_size(ori_image) ori_img_bgr = ImageHelper.get_cv2_bgr(ori_image, mode=self.configer.get( 'data', 'input_mode')) heatmap_avg = np.zeros( (ori_height, ori_width, self.configer.get('network', 'heatmap_out'))) for i, scale in enumerate(self.configer.get('test', 'scale_search')): image = self.blob_helper.make_input(ori_image, input_size=self.configer.get( 'test', 'input_size'), scale=scale) with torch.no_grad(): heatmap_out_list = self.pose_net(image) heatmap_out = heatmap_out_list[-1] # extract outputs, resize, and remove padding heatmap = heatmap_out.squeeze(0).cpu().numpy().transpose( 1, 2, 0) heatmap = cv2.resize(heatmap, (ori_width, ori_height), interpolation=cv2.INTER_CUBIC) heatmap_avg = heatmap_avg + heatmap / len( self.configer.get('test', 'scale_search')) all_peaks = self.__extract_heatmap_info(heatmap_avg) image_canvas = self.__draw_key_point(all_peaks, ori_img_bgr) ImageHelper.save(image_canvas, save_path) def __extract_heatmap_info(self, heatmap_avg): all_peaks = [] for part in range(self.configer.get('network', 'heatmap_out') - 1): map_ori = heatmap_avg[:, :, part] map_gau = gaussian_filter(map_ori, sigma=3) map_left = np.zeros(map_gau.shape) map_left[1:, :] = map_gau[:-1, :] map_right = np.zeros(map_gau.shape) map_right[:-1, :] = map_gau[1:, :] map_up = np.zeros(map_gau.shape) map_up[:, 1:] = map_gau[:, :-1] map_down = np.zeros(map_gau.shape) map_down[:, :-1] = map_gau[:, 1:] peaks_binary = np.logical_and.reduce( (map_gau >= map_left, map_gau >= map_right, map_gau >= map_up, map_gau >= map_down, map_gau > self.configer.get('vis', 'part_threshold'))) peaks = zip( np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0]) # note reverse peaks = list(peaks) peaks_with_score = [x + (map_ori[x[1], x[0]], ) for x in peaks] all_peaks.append(peaks_with_score) return all_peaks def __draw_key_point(self, all_peaks, img_raw): img_canvas = img_raw.copy() # B,G,R order for i in range(self.configer.get('network', 'heatmap_out') - 1): for j in range(len(all_peaks[i])): cv2.circle(img_canvas, all_peaks[i][j][0:2], self.configer.get('vis', 'stick_width'), self.configer.get('details', 'color_list')[i], thickness=-1) return img_canvas def debug(self, vis_dir): for i, data_dict in enumerate(self.pose_data_loader.get_trainloader()): inputs = data_dict['img'] heatmap = data_dict['heatmap'] for j in range(inputs.size(0)): image_bgr = self.blob_helper.tensor2bgr(inputs[j]) heatmap_avg = heatmap[j].numpy().transpose(1, 2, 0) heatmap_avg = cv2.resize( heatmap_avg, (0, 0), fx=self.configer.get('network', 'stride'), fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC) all_peaks = self.__extract_heatmap_info(heatmap_avg) image_save = self.__draw_key_point(all_peaks, image_bgr) cv2.imwrite( os.path.join(vis_dir, '{}_{}_result.jpg'.format(i, j)), image_save)
class ConvPoseMachine(object): """ The class for Pose Estimation. Include train, val, val & predict. """ def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.pose_visualizer = PoseVisualizer(configer) self.pose_model_manager = ModelManager(configer) self.pose_data_loader = DataLoader(configer) self.pose_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self.runner_state = dict() self._init_model() def _init_model(self): self.pose_net = self.pose_model_manager.get_single_pose_model() self.pose_net = RunnerHelper.load_net(self, self.pose_net) self.optimizer, self.scheduler = Trainer.init( self._get_parameters(), self.configer.get('solver')) self.train_loader = self.pose_data_loader.get_trainloader() self.val_loader = self.pose_data_loader.get_valloader() self.cpm_loss = self.pose_model_manager.get_pose_loss() def _get_parameters(self): return self.pose_net.parameters() def train(self): """ Train function of every epoch during train phase. """ self.pose_net.train() start_time = time.time() # Adjust the learning rate after every epoch. self.runner_state['epoch'] += 1 # data_tuple: (inputs, heatmap, maskmap, tagmap, num_objects) for i, data_dict in enumerate(self.train_loader): Trainer.update(self, solver_dict=self.configer.get('solver')) self.data_time.update(time.time() - start_time) # Change the data type. # Forward pass. out_dict = self.pose_net(data_dict) # Compute the loss of the train batch & backward. loss = self.cpm_loss(out_dict, data_dict, gathered=self.configer.get( 'network', 'gathered')) self.train_losses.update(loss.item(), len(DCHelper.tolist(data_dict['meta']))) self.optimizer.zero_grad() loss.backward() self.optimizer.step() # Update the vars of the train phase. self.batch_time.update(time.time() - start_time) start_time = time.time() self.runner_state['iters'] += 1 # Print the log info & reset the states. if self.runner_state['iters'] % self.configer.get( 'solver', 'display_iter') == 0: Log.info( 'Train Epoch: {0}\tTrain Iteration: {1}\t' 'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t' 'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n' 'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n' .format(self.runner_state['epoch'], self.runner_state['iters'], self.configer.get('solver', 'display_iter'), RunnerHelper.get_lr(self.optimizer), batch_time=self.batch_time, data_time=self.data_time, loss=self.train_losses)) self.batch_time.reset() self.data_time.reset() self.train_losses.reset() if self.configer.get('solver', 'lr')['metric'] == 'iters' \ and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'): break # Check to val the current model. if self.runner_state['iters'] % self.configer.get( 'solver', 'test_interval') == 0: self.val() def val(self): """ Validation function during the train phase. """ self.pose_net.eval() start_time = time.time() with torch.no_grad(): for j, data_dict in enumerate(self.val_loader): # Forward pass. out_dict = self.pose_net(data_dict) # Compute the loss of the val batch. loss = self.cpm_loss(out_dict, data_dict, gathered=self.configer.get( 'network', 'gathered')) self.val_losses.update(loss.item(), len(DCHelper.tolist(data_dict['meta']))) # Update the vars of the val phase. self.batch_time.update(time.time() - start_time) start_time = time.time() RunnerHelper.save_net(self, self.pose_net, iters=self.runner_state['iters']) # Print the log info & reset the states. Log.info( 'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t' 'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time, loss=self.val_losses)) self.batch_time.reset() self.val_losses.reset() self.pose_net.train()