示例#1
0
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_schedule_loss = AverageMeter()
        self.train_losses = AverageMeter()
        self.train_loss_heatmap = AverageMeter()
        self.train_loss_associate = AverageMeter()
        self.val_losses = AverageMeter()
        self.val_loss_heatmap = AverageMeter()
        self.val_loss_associate = AverageMeter()
        self.pose_visualizer = PoseVisualizer(configer)
        self.pose_loss_manager = LossManager(configer)
        self.pose_model_manager = ModelManager(configer)
        self.pose_data_loader = DataLoader(configer)
        self.heatmap_generator = HeatmapGenerator(configer)
        self.paf_generator = PafGenerator(configer)

        self.pose_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None
        self.runner_state = dict()

        self._init_model()
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.pose_vis = PoseVisualizer(configer)
        self.pose_model_manager = ModelManager(configer)
        self.pose_data_loader = DataLoader(configer)
        self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda')
        self.pose_net = None

        self._init_model()
示例#3
0
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.pose_visualizer = PoseVisualizer(configer)
        self.pose_parser = PoseParser(configer)
        self.pose_model_manager = PoseModelManager(configer)
        self.pose_data_loader = DataLoader(configer)
        self.heatmap_generator = HeatmapGenerator(configer)
        self.paf_generator = PafGenerator(configer)
        self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda')
        self.pose_net = None

        self._init_model()
示例#4
0
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = DictAverageMeter()
        self.val_losses = DictAverageMeter()
        self.pose_visualizer = PoseVisualizer(configer)
        self.pose_model_manager = ModelManager(configer)
        self.pose_data_loader = DataLoader(configer)

        self.pose_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None
        self.runner_state = dict()

        self._init_model()
示例#5
0
class OpenPose(object):
    """
      The class for Pose Estimation. Include train, val, test & predict.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_schedule_loss = AverageMeter()
        self.train_losses = AverageMeter()
        self.train_loss_heatmap = AverageMeter()
        self.train_loss_associate = AverageMeter()
        self.val_losses = AverageMeter()
        self.val_loss_heatmap = AverageMeter()
        self.val_loss_associate = AverageMeter()
        self.pose_visualizer = PoseVisualizer(configer)
        self.pose_loss_manager = LossManager(configer)
        self.pose_model_manager = ModelManager(configer)
        self.pose_data_loader = DataLoader(configer)
        self.heatmap_generator = HeatmapGenerator(configer)
        self.paf_generator = PafGenerator(configer)

        self.pose_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None
        self.runner_state = dict()

        self._init_model()

    def _init_model(self):
        self.pose_net = self.pose_model_manager.multi_pose_detector()
        self.pose_net = RunnerHelper.load_net(self, self.pose_net)

        self.optimizer, self.scheduler = Trainer.init(self,
                                                      self._get_parameters())

        self.train_loader = self.pose_data_loader.get_trainloader()
        self.val_loader = self.pose_data_loader.get_valloader()

        self.weights = self.configer.get('network', 'loss_weights')
        self.mse_loss = self.pose_loss_manager.get_pose_loss()

    def _get_parameters(self):
        lr_1 = []
        lr_2 = []
        params_dict = dict(self.pose_net.named_parameters())
        for key, value in params_dict.items():
            if 'backbone' not in key:
                lr_2.append(value)
            else:
                lr_1.append(value)

        params = [
            {
                'params': lr_1,
                'lr': self.configer.get('lr', 'base_lr'),
                'weight_decay': 0.0
            },
            {
                'params': lr_2,
                'lr': self.configer.get('lr', 'base_lr'),
                'weight_decay': 0.0
            },
        ]

        return params

    def train(self):
        """
          Train function of every epoch during train phase.
        """
        self.pose_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.
        self.runner_state['epoch'] += 1
        self.scheduler.step(self.train_schedule_loss.avg,
                            epoch=self.configer.get('epoch'))
        self.train_schedule_loss.reset()
        # data_tuple: (inputs, heatmap, maskmap, vecmap)
        for i, data_dict in enumerate(self.train_loader):
            inputs = data_dict['img']
            maskmap = data_dict['maskmap']
            heatmap = data_dict['heatmap']
            vecmap = data_dict['vecmap']

            self.data_time.update(time.time() - start_time)
            # Change the data type.
            inputs, heatmap, maskmap, vecmap = RunnerHelper.to_device(
                self, inputs, heatmap, maskmap, vecmap)

            # Forward pass.
            paf_out, heatmap_out = self.pose_net(inputs)

            # Compute the loss of the train batch & backward.
            loss_heatmap = self.mse_loss(heatmap_out,
                                         heatmap,
                                         mask=maskmap,
                                         weights=self.weights)
            loss_associate = self.mse_loss(paf_out,
                                           vecmap,
                                           mask=maskmap,
                                           weights=self.weights)
            loss = 2.0 * loss_heatmap + loss_associate

            self.train_losses.update(loss.item(), inputs.size(0))
            self.train_schedule_loss.update(loss.item(), inputs.size(0))
            self.train_loss_heatmap.update(loss_heatmap.item(), inputs.size(0))
            self.train_loss_associate.update(loss_associate.item(),
                                             inputs.size(0))

            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.runner_state['iters'] += 1

            # Print the log info & reset the states.
            if self.runner_state['iters'] % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info('Loss Heatmap:{}, Loss Asso: {}'.format(
                    self.train_loss_heatmap.avg,
                    self.train_loss_associate.avg))
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'
                    .format(self.runner_state['epoch'],
                            self.runner_state['iters'],
                            self.configer.get('solver', 'display_iter'),
                            RunnerHelper.get_lr(self.optimizer),
                            batch_time=self.batch_time,
                            data_time=self.data_time,
                            loss=self.train_losses))

                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()
                self.train_loss_heatmap.reset()
                self.train_loss_associate.reset()

            if self.configer.get('lr', 'metric') == 'iters' \
                    and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'):
                break

            # Check to val the current model.
            if self.runner_state['iters'] % self.configer.get(
                    'solver', 'test_interval') == 0:
                self.val()

    def val(self):
        """
          Validation function during the train phase.
        """
        self.pose_net.eval()
        start_time = time.time()

        with torch.no_grad():
            for i, data_dict in enumerate(self.val_loader):
                inputs = data_dict['img']
                maskmap = data_dict['maskmap']
                heatmap = data_dict['heatmap']
                vecmap = data_dict['vecmap']
                # Change the data type.
                inputs, heatmap, maskmap, vecmap = RunnerHelper.to_device(
                    self, inputs, heatmap, maskmap, vecmap)

                # Forward pass.
                paf_out, heatmap_out = self.pose_net(inputs)
                # Compute the loss of the val batch.
                loss_heatmap = self.mse_loss(heatmap_out[-1], heatmap, maskmap)
                loss_associate = self.mse_loss(paf_out[-1], vecmap, maskmap)
                loss = 2.0 * loss_heatmap + loss_associate

                self.val_losses.update(loss.item(), inputs.size(0))
                self.val_loss_heatmap.update(loss_heatmap.item(),
                                             inputs.size(0))
                self.val_loss_associate.update(loss_associate.item(),
                                               inputs.size(0))

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            self.runner_state['val_loss'] = self.val_losses.avg
            RunnerHelper.save_net(self,
                                  self.pose_net,
                                  val_loss=self.val_losses.avg)
            Log.info('Loss Heatmap:{}, Loss Asso: {}'.format(
                self.val_loss_heatmap.avg, self.val_loss_associate.avg))
            # Print the log info & reset the states.
            Log.info(
                'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                               loss=self.val_losses))
            self.batch_time.reset()
            self.val_losses.reset()
            self.val_loss_heatmap.reset()
            self.val_loss_associate.reset()
            self.pose_net.train()
示例#6
0
class OpenPoseTest(object):
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.pose_visualizer = PoseVisualizer(configer)
        self.pose_parser = PoseParser(configer)
        self.pose_model_manager = PoseModelManager(configer)
        self.pose_data_loader = DataLoader(configer)
        self.heatmap_generator = HeatmapGenerator(configer)
        self.paf_generator = PafGenerator(configer)
        self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda')
        self.pose_net = None

        self._init_model()

    def _init_model(self):
        self.pose_net = self.pose_model_manager.multi_pose_detector()
        self.pose_net = RunnerHelper.load_net(self, self.pose_net)
        self.pose_net.eval()

    def _get_blob(self, ori_image, scale=None):
        assert scale is not None
        image = self.blob_helper.make_input(image=ori_image, scale=scale)

        b, c, h, w = image.size()
        border_hw = [h, w]
        if self.configer.exists('test', 'fit_stride'):
            stride = self.configer.get('test', 'fit_stride')

            pad_w = 0 if (w % stride == 0) else stride - (w % stride)  # right
            pad_h = 0 if (h % stride == 0) else stride - (h % stride)  # down

            expand_image = torch.zeros((b, c, h + pad_h, w + pad_w)).to(image.device)
            expand_image[:, :, 0:h, 0:w] = image
            image = expand_image

        return image, border_hw

    def __test_img(self, image_path, json_path, raw_path, vis_path):

        Log.info('Image Path: {}'.format(image_path))
        ori_image = ImageHelper.read_image(image_path,
                                           tool=self.configer.get('data', 'image_tool'),
                                           mode=self.configer.get('data', 'input_mode'))

        ori_width, ori_height = ImageHelper.get_size(ori_image)
        ori_img_bgr = ImageHelper.get_cv2_bgr(ori_image, mode=self.configer.get('data', 'input_mode'))
        heatmap_avg = np.zeros((ori_height, ori_width, self.configer.get('network', 'heatmap_out')))
        paf_avg = np.zeros((ori_height, ori_width, self.configer.get('network', 'paf_out')))
        multiplier = [scale * self.configer.get('test', 'input_size')[1] / ori_height
                      for scale in self.configer.get('test', 'scale_search')]
        stride = self.configer.get('network', 'stride')
        for i, scale in enumerate(multiplier):
            image, border_hw = self._get_blob(ori_image, scale=scale)
            with torch.no_grad():
                paf_out_list, heatmap_out_list = self.pose_net(image)
                paf_out = paf_out_list[-1]
                heatmap_out = heatmap_out_list[-1]

                # extract outputs, resize, and remove padding
                heatmap = heatmap_out.squeeze(0).cpu().numpy().transpose(1, 2, 0)

                heatmap = cv2.resize(heatmap, None, fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
                heatmap = cv2.resize(heatmap[:border_hw[0], :border_hw[1]],
                                     (ori_width, ori_height), interpolation=cv2.INTER_CUBIC)

                paf = paf_out.squeeze(0).cpu().numpy().transpose(1, 2, 0)
                paf = cv2.resize(paf, None, fx=stride, fy=stride, interpolation=cv2.INTER_CUBIC)
                paf = cv2.resize(paf[:border_hw[0], :border_hw[1]],
                                 (ori_width, ori_height), interpolation=cv2.INTER_CUBIC)

                heatmap_avg = heatmap_avg + heatmap / len(multiplier)
                paf_avg = paf_avg + paf / len(multiplier)

        all_peaks = self.__extract_heatmap_info(heatmap_avg)
        special_k, connection_all = self.__extract_paf_info(ori_img_bgr, paf_avg, all_peaks)
        subset, candidate = self.__get_subsets(connection_all, special_k, all_peaks)
        json_dict = self.__get_info_tree(ori_img_bgr, subset, candidate)

        image_canvas = self.pose_parser.draw_points(ori_img_bgr.copy(), json_dict)
        image_canvas = self.pose_parser.link_points(image_canvas, json_dict)

        ImageHelper.save(image_canvas, vis_path)
        ImageHelper.save(ori_img_bgr, raw_path)
        Log.info('Json Save Path: {}'.format(json_path))
        JsonHelper.save_file(json_dict, json_path)

    def __get_info_tree(self, image_raw, subset, candidate):
        json_dict = dict()
        height, width, _ = image_raw.shape
        json_dict['image_height'] = height
        json_dict['image_width'] = width
        object_list = list()
        for n in range(len(subset)):
            if subset[n][-1] < self.configer.get('res', 'num_threshold'):
                continue

            if subset[n][-2] / subset[n][-1] < self.configer.get('res', 'avg_threshold'):
                continue

            object_dict = dict()
            object_dict['kpts'] = np.zeros((self.configer.get('data', 'num_kpts'), 3)).tolist()
            for j in range(self.configer.get('data', 'num_kpts')):
                index = subset[n][j]
                if index == -1:
                    object_dict['kpts'][j][0] = -1
                    object_dict['kpts'][j][1] = -1
                    object_dict['kpts'][j][2] = -1

                else:
                    object_dict['kpts'][j][0] = candidate[index.astype(int)][0]
                    object_dict['kpts'][j][1] = candidate[index.astype(int)][1]
                    object_dict['kpts'][j][2] = 1

            object_dict['score'] = subset[n][-2]
            object_list.append(object_dict)

        json_dict['objects'] = object_list
        return json_dict

    def __extract_heatmap_info(self, heatmap_avg):
        all_peaks = []
        peak_counter = 0

        for part in range(self.configer.get('data', 'num_kpts')):
            map_ori = heatmap_avg[:, :, part]
            map_gau = gaussian_filter(map_ori, sigma=3)

            map_left = np.zeros(map_gau.shape)
            map_left[1:, :] = map_gau[:-1, :]
            map_right = np.zeros(map_gau.shape)
            map_right[:-1, :] = map_gau[1:, :]
            map_up = np.zeros(map_gau.shape)
            map_up[:, 1:] = map_gau[:, :-1]
            map_down = np.zeros(map_gau.shape)
            map_down[:, :-1] = map_gau[:, 1:]

            peaks_binary = np.logical_and.reduce(
                (map_gau >= map_left, map_gau >= map_right, map_gau >= map_up,
                 map_gau >= map_down, map_gau > self.configer.get('res', 'part_threshold')))

            peaks = zip(np.nonzero(peaks_binary)[1], np.nonzero(peaks_binary)[0])  # note reverse
            peaks = list(peaks)

            '''
            del_flag = [0 for i in range(len(peaks))]
            for i in range(len(peaks)):
                if del_flag[i] == 0:
                    for j in range(i+1, len(peaks)):
                        if max(abs(peaks[i][0] - peaks[j][0]), abs(peaks[i][1] - peaks[j][1])) <= 6:
                            del_flag[j] = 1

            new_peaks = list()
            for i in range(len(peaks)):
                if del_flag[i] == 0:
                    new_peaks.append(peaks[i])

            peaks = new_peaks
            '''

            peaks_with_score = [x + (map_ori[x[1], x[0]],) for x in peaks]
            ids = range(peak_counter, peak_counter + len(peaks))
            peaks_with_score_and_id = [peaks_with_score[i] + (ids[i],) for i in range(len(ids))]

            all_peaks.append(peaks_with_score_and_id)
            peak_counter += len(peaks)

        return all_peaks

    def __extract_paf_info(self, img_raw, paf_avg, all_peaks):
        connection_all = []
        special_k = []
        mid_num = self.configer.get('res', 'mid_point_num')

        for k in range(len(self.configer.get('details', 'limb_seq'))):
            score_mid = paf_avg[:, :, [k*2, k*2+1]]
            candA = all_peaks[self.configer.get('details', 'limb_seq')[k][0] - 1]
            candB = all_peaks[self.configer.get('details', 'limb_seq')[k][1] - 1]
            nA = len(candA)
            nB = len(candB)
            if nA != 0 and nB != 0:
                connection_candidate = []
                for i in range(nA):
                    for j in range(nB):
                        vec = np.subtract(candB[j][:2], candA[i][:2])
                        norm = math.sqrt(vec[0] * vec[0] + vec[1] * vec[1]) + 1e-9
                        vec = np.divide(vec, norm)

                        startend = zip(np.linspace(candA[i][0], candB[j][0], num=mid_num),
                                       np.linspace(candA[i][1], candB[j][1], num=mid_num))
                        startend = list(startend)

                        vec_x = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 0]
                                          for I in range(len(startend))])
                        vec_y = np.array([score_mid[int(round(startend[I][1])), int(round(startend[I][0])), 1]
                                          for I in range(len(startend))])

                        score_midpts = np.multiply(vec_x, vec[0]) + np.multiply(vec_y, vec[1])
                        score_with_dist_prior = sum(score_midpts) / len(score_midpts)
                        score_with_dist_prior += min(0.5 * img_raw.shape[0] / norm - 1, 0)

                        num_positive = len(np.nonzero(score_midpts > self.configer.get('res', 'limb_threshold'))[0])
                        criterion1 = num_positive > int(self.configer.get('res', 'limb_pos_ratio') * len(score_midpts))
                        criterion2 = score_with_dist_prior > 0
                        if criterion1 and criterion2:
                            connection_candidate.append(
                                [i, j, score_with_dist_prior, score_with_dist_prior + candA[i][2] + candB[j][2]])

                connection_candidate = sorted(connection_candidate, key=lambda x: x[2], reverse=True)
                connection = np.zeros((0, 5))
                for c in range(len(connection_candidate)):
                    i, j, s = connection_candidate[c][0:3]
                    if i not in connection[:, 3] and j not in connection[:, 4]:
                        connection = np.vstack([connection, [candA[i][3], candB[j][3], s, i, j]])
                        if len(connection) >= min(nA, nB):
                            break

                connection_all.append(connection)
            else:
                special_k.append(k)
                connection_all.append([])

        return special_k, connection_all

    def __get_subsets(self, connection_all, special_k, all_peaks):
        # last number in each row is the total parts number of that person
        # the second last number in each row is the score of the overall configuration
        subset = -1 * np.ones((0, self.configer.get('data', 'num_kpts') + 2))
        candidate = np.array([item for sublist in all_peaks for item in sublist])

        for k in self.configer.get('details', 'mini_tree'):
            if k not in special_k:
                partAs = connection_all[k][:, 0]
                partBs = connection_all[k][:, 1]
                indexA, indexB = np.array(self.configer.get('details', 'limb_seq')[k]) - 1

                for i in range(len(connection_all[k])):  # = 1:size(temp,1)
                    found = 0
                    subset_idx = [-1, -1]
                    for j in range(len(subset)):  # 1:size(subset,1):
                        if subset[j][indexA] == partAs[i] or subset[j][indexB] == partBs[i]:
                            subset_idx[found] = j
                            found += 1

                    if found == 1:
                        j = subset_idx[0]
                        if (subset[j][indexB] != partBs[i]):
                            subset[j][indexB] = partBs[i]
                            subset[j][-1] += 1
                            subset[j][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]
                    elif found == 2:  # if found 2 and disjoint, merge them
                        j1, j2 = subset_idx
                        membership = ((subset[j1] >= 0).astype(int) + (subset[j2] >= 0).astype(int))[:-2]
                        if len(np.nonzero(membership == 2)[0]) == 0:  # merge
                            subset[j1][:-2] += (subset[j2][:-2] + 1)
                            subset[j1][-2:] += subset[j2][-2:]
                            subset[j1][-2] += connection_all[k][i][2]
                            subset = np.delete(subset, j2, 0)
                        else:  # as like found == 1
                            subset[j1][indexB] = partBs[i]
                            subset[j1][-1] += 1
                            subset[j1][-2] += candidate[partBs[i].astype(int), 2] + connection_all[k][i][2]

                    # if find no partA in the subset, create a new subset
                    elif not found:
                        row = -1 * np.ones(self.configer.get('data', 'num_kpts') + 2)
                        row[indexA] = partAs[i]
                        row[indexB] = partBs[i]
                        row[-1] = 2
                        row[-2] = sum(candidate[connection_all[k][i, :2].astype(int), 2]) + connection_all[k][i][2]
                        subset = np.vstack([subset, row])

        return subset, candidate

    def debug(self, vis_dir):
        for i, data_dict in enumerate(self.pose_data_loader.get_trainloader()):
            inputs = data_dict['img']
            maskmap = data_dict['maskmap']
            heatmap = data_dict['heatmap']
            vecmap = data_dict['vecmap']
            for j in range(inputs.size(0)):
                count = count + 1
                if count > 10:
                    exit(1)

                Log.info(heatmap.size())
                image_bgr = self.blob_helper.tensor2bgr(inputs[j])
                mask_canvas = maskmap[j].repeat(3, 1, 1).numpy().transpose(1, 2, 0)
                mask_canvas = (mask_canvas * 255).astype(np.uint8)
                mask_canvas = cv2.resize(mask_canvas, (0, 0), fx=self.configer.get('network', 'stride'),
                                         fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC)

                image_bgr = cv2.addWeighted(image_bgr, 0.6, mask_canvas, 0.4, 0)
                heatmap_avg = heatmap[j].numpy().transpose(1, 2, 0)
                heatmap_avg = cv2.resize(heatmap_avg, (0, 0), fx=self.configer.get('network', 'stride'),
                                     fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC)
                paf_avg = vecmap[j].numpy().transpose(1, 2, 0)
                paf_avg = cv2.resize(paf_avg, (0, 0), fx=self.configer.get('network', 'stride'),
                                     fy=self.configer.get('network', 'stride'), interpolation=cv2.INTER_CUBIC)
                self.pose_visualizer.vis_peaks(heatmap_avg, image_bgr)
                self.pose_visualizer.vis_paf(paf_avg, image_bgr)
                all_peaks = self.__extract_heatmap_info(heatmap_avg)
                special_k, connection_all = self.__extract_paf_info(image_bgr, paf_avg, all_peaks)
                subset, candidate = self.__get_subsets(connection_all, special_k, all_peaks)
                json_dict = self.__get_info_tree(image_bgr, subset, candidate)
                image_canvas = self.pose_parser.draw_points(image_bgr, json_dict)
                image_canvas = self.pose_parser.link_points(image_canvas, json_dict)
                cv2.imwrite(os.path.join(vis_dir, '{}_{}_vis.png'.format(i, j)), image_canvas)
                cv2.imshow('main', image_canvas)
                cv2.waitKey()
示例#7
0
class OpenPose(object):
    """
      The class for Pose Estimation. Include train, val, test & predict.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = DictAverageMeter()
        self.val_losses = DictAverageMeter()
        self.pose_visualizer = PoseVisualizer(configer)
        self.pose_model_manager = ModelManager(configer)
        self.pose_data_loader = DataLoader(configer)

        self.pose_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None
        self.runner_state = dict()

        self._init_model()

    def _init_model(self):
        self.pose_net = self.pose_model_manager.get_multi_pose_model()
        self.pose_net = RunnerHelper.load_net(self, self.pose_net)

        self.optimizer, self.scheduler = Trainer.init(
            self._get_parameters(), self.configer.get('solver'))

        self.train_loader = self.pose_data_loader.get_trainloader()
        self.val_loader = self.pose_data_loader.get_valloader()

        self.pose_loss = self.pose_model_manager.get_pose_loss()

    def _get_parameters(self):
        lr_1 = []
        lr_2 = []
        params_dict = dict(self.pose_net.named_parameters())
        for key, value in params_dict.items():
            if 'backbone' not in key:
                lr_2.append(value)
            else:
                lr_1.append(value)

        params = [
            {
                'params': lr_1,
                'lr': self.configer.get('solver', 'lr')['base_lr'],
                'weight_decay': 0.0
            },
            {
                'params': lr_2,
                'lr': self.configer.get('solver', 'lr')['base_lr'],
                'weight_decay': 0.0
            },
        ]

        return params

    def train(self):
        """
          Train function of every epoch during train phase.
        """
        self.pose_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.
        self.runner_state['epoch'] += 1
        for i, data_dict in enumerate(self.train_loader):
            Trainer.update(self,
                           backbone_list=(0, ),
                           solver_dict=self.configer.get('solver'))
            self.data_time.update(time.time() - start_time)
            # Forward pass.
            out = self.pose_net(data_dict)

            # Compute the loss of the train batch & backward.
            loss_dict = self.pose_loss(out)

            loss = loss_dict['loss']
            self.train_losses.update(
                {key: loss.item()
                 for key, loss in loss_dict.items()}, data_dict['img'].size(0))

            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.runner_state['iters'] += 1

            # Print the log info & reset the states.
            if self.runner_state['iters'] % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {4}\tLoss = {3}\n'.format(
                        self.runner_state['epoch'],
                        self.runner_state['iters'],
                        self.configer.get('solver', 'display_iter'),
                        self.train_losses.info(),
                        RunnerHelper.get_lr(self.optimizer),
                        batch_time=self.batch_time,
                        data_time=self.data_time))

                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            if self.configer.get('solver', 'lr')['metric'] == 'iters' \
                    and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'):
                break

            # Check to val the current model.
            if self.runner_state['iters'] % self.configer.get(
                    'solver', 'test_interval') == 0:
                self.val()

    def val(self):
        """
          Validation function during the train phase.
        """
        self.pose_net.eval()
        start_time = time.time()

        with torch.no_grad():
            for i, data_dict in enumerate(self.val_loader):
                # Forward pass.
                out = self.pose_net(data_dict)
                # Compute the loss of the val batch.
                loss_dict = self.pose_loss(out)

                self.val_losses.update(
                    {key: loss.item()
                     for key, loss in loss_dict.items()},
                    data_dict['img'].size(0))

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            self.runner_state['val_loss'] = self.val_losses.avg['loss']
            RunnerHelper.save_net(self,
                                  self.pose_net,
                                  val_loss=self.val_losses.avg['loss'])
            # Print the log info & reset the states.
            Log.info(
                'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                'Loss {0}\n'.format(self.val_losses.info(),
                                    batch_time=self.batch_time))
            self.batch_time.reset()
            self.val_losses.reset()
            self.pose_net.train()
示例#8
0
class ConvPoseMachineTest(object):
    def __init__(self, configer):
        self.configer = configer
        self.blob_helper = BlobHelper(configer)
        self.pose_vis = PoseVisualizer(configer)
        self.pose_model_manager = ModelManager(configer)
        self.pose_data_loader = DataLoader(configer)
        self.device = torch.device(
            'cpu' if self.configer.get('gpu') is None else 'cuda')
        self.pose_net = None

        self._init_model()

    def _init_model(self):
        self.pose_net = self.pose_model_manager.multi_pose_detector()
        self.pose_net = RunnerHelper.load_net(self, self.pose_net)
        self.pose_net.eval()

    def __test_img(self, image_path, save_path):
        Log.info('Image Path: {}'.format(image_path))
        ori_image = ImageHelper.read_image(
            image_path,
            tool=self.configer.get('data', 'image_tool'),
            mode=self.configer.get('data', 'input_mode'))

        ori_width, ori_height = ImageHelper.get_size(ori_image)
        ori_img_bgr = ImageHelper.get_cv2_bgr(ori_image,
                                              mode=self.configer.get(
                                                  'data', 'input_mode'))
        heatmap_avg = np.zeros(
            (ori_height, ori_width, self.configer.get('network',
                                                      'heatmap_out')))
        for i, scale in enumerate(self.configer.get('test', 'scale_search')):
            image = self.blob_helper.make_input(ori_image,
                                                input_size=self.configer.get(
                                                    'test', 'input_size'),
                                                scale=scale)
            with torch.no_grad():
                heatmap_out_list = self.pose_net(image)
                heatmap_out = heatmap_out_list[-1]

                # extract outputs, resize, and remove padding
                heatmap = heatmap_out.squeeze(0).cpu().numpy().transpose(
                    1, 2, 0)
                heatmap = cv2.resize(heatmap, (ori_width, ori_height),
                                     interpolation=cv2.INTER_CUBIC)

                heatmap_avg = heatmap_avg + heatmap / len(
                    self.configer.get('test', 'scale_search'))

        all_peaks = self.__extract_heatmap_info(heatmap_avg)
        image_canvas = self.__draw_key_point(all_peaks, ori_img_bgr)
        ImageHelper.save(image_canvas, save_path)

    def __extract_heatmap_info(self, heatmap_avg):
        all_peaks = []

        for part in range(self.configer.get('network', 'heatmap_out') - 1):
            map_ori = heatmap_avg[:, :, part]
            map_gau = gaussian_filter(map_ori, sigma=3)

            map_left = np.zeros(map_gau.shape)
            map_left[1:, :] = map_gau[:-1, :]
            map_right = np.zeros(map_gau.shape)
            map_right[:-1, :] = map_gau[1:, :]
            map_up = np.zeros(map_gau.shape)
            map_up[:, 1:] = map_gau[:, :-1]
            map_down = np.zeros(map_gau.shape)
            map_down[:, :-1] = map_gau[:, 1:]

            peaks_binary = np.logical_and.reduce(
                (map_gau >= map_left, map_gau >= map_right, map_gau >= map_up,
                 map_gau >= map_down,
                 map_gau > self.configer.get('vis', 'part_threshold')))

            peaks = zip(
                np.nonzero(peaks_binary)[1],
                np.nonzero(peaks_binary)[0])  # note reverse
            peaks = list(peaks)
            peaks_with_score = [x + (map_ori[x[1], x[0]], ) for x in peaks]

            all_peaks.append(peaks_with_score)

        return all_peaks

    def __draw_key_point(self, all_peaks, img_raw):
        img_canvas = img_raw.copy()  # B,G,R order

        for i in range(self.configer.get('network', 'heatmap_out') - 1):
            for j in range(len(all_peaks[i])):
                cv2.circle(img_canvas,
                           all_peaks[i][j][0:2],
                           self.configer.get('vis', 'stick_width'),
                           self.configer.get('details', 'color_list')[i],
                           thickness=-1)

        return img_canvas

    def debug(self, vis_dir):

        for i, data_dict in enumerate(self.pose_data_loader.get_trainloader()):
            inputs = data_dict['img']
            heatmap = data_dict['heatmap']

            for j in range(inputs.size(0)):
                image_bgr = self.blob_helper.tensor2bgr(inputs[j])
                heatmap_avg = heatmap[j].numpy().transpose(1, 2, 0)
                heatmap_avg = cv2.resize(
                    heatmap_avg, (0, 0),
                    fx=self.configer.get('network', 'stride'),
                    fy=self.configer.get('network', 'stride'),
                    interpolation=cv2.INTER_CUBIC)
                all_peaks = self.__extract_heatmap_info(heatmap_avg)
                image_save = self.__draw_key_point(all_peaks, image_bgr)
                cv2.imwrite(
                    os.path.join(vis_dir, '{}_{}_result.jpg'.format(i, j)),
                    image_save)
示例#9
0
class ConvPoseMachine(object):
    """
      The class for Pose Estimation. Include train, val, val & predict.
    """
    def __init__(self, configer):
        self.configer = configer
        self.batch_time = AverageMeter()
        self.data_time = AverageMeter()
        self.train_losses = AverageMeter()
        self.val_losses = AverageMeter()
        self.pose_visualizer = PoseVisualizer(configer)
        self.pose_model_manager = ModelManager(configer)
        self.pose_data_loader = DataLoader(configer)

        self.pose_net = None
        self.train_loader = None
        self.val_loader = None
        self.optimizer = None
        self.scheduler = None
        self.runner_state = dict()

        self._init_model()

    def _init_model(self):
        self.pose_net = self.pose_model_manager.get_single_pose_model()
        self.pose_net = RunnerHelper.load_net(self, self.pose_net)

        self.optimizer, self.scheduler = Trainer.init(
            self._get_parameters(), self.configer.get('solver'))

        self.train_loader = self.pose_data_loader.get_trainloader()
        self.val_loader = self.pose_data_loader.get_valloader()

        self.cpm_loss = self.pose_model_manager.get_pose_loss()

    def _get_parameters(self):

        return self.pose_net.parameters()

    def train(self):
        """
          Train function of every epoch during train phase.
        """
        self.pose_net.train()
        start_time = time.time()
        # Adjust the learning rate after every epoch.
        self.runner_state['epoch'] += 1

        # data_tuple: (inputs, heatmap, maskmap, tagmap, num_objects)
        for i, data_dict in enumerate(self.train_loader):
            Trainer.update(self, solver_dict=self.configer.get('solver'))

            self.data_time.update(time.time() - start_time)
            # Change the data type.

            # Forward pass.
            out_dict = self.pose_net(data_dict)

            # Compute the loss of the train batch & backward.
            loss = self.cpm_loss(out_dict,
                                 data_dict,
                                 gathered=self.configer.get(
                                     'network', 'gathered'))

            self.train_losses.update(loss.item(),
                                     len(DCHelper.tolist(data_dict['meta'])))
            self.optimizer.zero_grad()
            loss.backward()
            self.optimizer.step()

            # Update the vars of the train phase.
            self.batch_time.update(time.time() - start_time)
            start_time = time.time()
            self.runner_state['iters'] += 1

            # Print the log info & reset the states.
            if self.runner_state['iters'] % self.configer.get(
                    'solver', 'display_iter') == 0:
                Log.info(
                    'Train Epoch: {0}\tTrain Iteration: {1}\t'
                    'Time {batch_time.sum:.3f}s / {2}iters, ({batch_time.avg:.3f})\t'
                    'Data load {data_time.sum:.3f}s / {2}iters, ({data_time.avg:3f})\n'
                    'Learning rate = {3}\tLoss = {loss.val:.8f} (ave = {loss.avg:.8f})\n'
                    .format(self.runner_state['epoch'],
                            self.runner_state['iters'],
                            self.configer.get('solver', 'display_iter'),
                            RunnerHelper.get_lr(self.optimizer),
                            batch_time=self.batch_time,
                            data_time=self.data_time,
                            loss=self.train_losses))
                self.batch_time.reset()
                self.data_time.reset()
                self.train_losses.reset()

            if self.configer.get('solver', 'lr')['metric'] == 'iters' \
                    and self.runner_state['iters'] == self.configer.get('solver', 'max_iters'):
                break

            # Check to val the current model.
            if self.runner_state['iters'] % self.configer.get(
                    'solver', 'test_interval') == 0:
                self.val()

    def val(self):
        """
          Validation function during the train phase.
        """
        self.pose_net.eval()
        start_time = time.time()

        with torch.no_grad():
            for j, data_dict in enumerate(self.val_loader):
                # Forward pass.
                out_dict = self.pose_net(data_dict)

                # Compute the loss of the val batch.
                loss = self.cpm_loss(out_dict,
                                     data_dict,
                                     gathered=self.configer.get(
                                         'network', 'gathered'))

                self.val_losses.update(loss.item(),
                                       len(DCHelper.tolist(data_dict['meta'])))

                # Update the vars of the val phase.
                self.batch_time.update(time.time() - start_time)
                start_time = time.time()

            RunnerHelper.save_net(self,
                                  self.pose_net,
                                  iters=self.runner_state['iters'])
            # Print the log info & reset the states.
            Log.info(
                'Test Time {batch_time.sum:.3f}s, ({batch_time.avg:.3f})\t'
                'Loss {loss.avg:.8f}\n'.format(batch_time=self.batch_time,
                                               loss=self.val_losses))
            self.batch_time.reset()
            self.val_losses.reset()
            self.pose_net.train()