def test_low_rank_matrix():
    lrm = SG.LowRankMatrix(n_samples=50, n_features=25, effective_rank=5,
                             tail_strength=0.01, random_state=0)
    X = lrm.latent_structure_task()
    tasks.assert_latent_structure(X)

    assert_equal(X.shape, (50, 25), "X shape mismatch")

    from numpy.linalg import svd
    u, s, v = svd(X)
    assert sum(s) - 5 < 0.1, "X rank is not approximately 5"

    X, Y = lrm.matrix_completion_task()
    tasks.assert_matrix_completion(X, Y)
def test_sparse_coded_signal():
    scs = SG.SparseCodedSignal(n_samples=5, n_components=8, n_features=10,
            n_nonzero_coefs=3, random_state=0)
    Y = scs.latent_structure_task()
    D = scs.D # XXX use scs.descr
    X = scs.X # XXX use scs.meta
    tasks.assert_latent_structure(Y)
    assert_equal(Y.shape, (10, 5), "Y shape mismatch")
    assert_equal(D.shape, (10, 8), "D shape mismatch")
    assert_equal(X.shape, (8, 5), "X shape mismatch")
    for col in X.T:
        assert_equal(len(np.flatnonzero(col)), 3, 'Non-zero coefs mismatch')
    assert_equal(np.dot(D, X), Y)
    assert_array_almost_equal(np.sqrt((D ** 2).sum(axis=0)),
                              np.ones(D.shape[1]))
def test_several():
    dsetnames = ['MNIST_Basic',
            'MNIST_BackgroundImages',
            'MNIST_BackgroundRandom',
            'Rectangles',
            'RectanglesImages',
            'Convex']
    dsetnames.extend(['MNIST_Noise%i' % i for i in range(1,7)])
    for dsetname in dsetnames:

        aa = dset(dsetname)
        assert len(aa.meta) == sum(
                [aa.descr[s] for s in 'n_train', 'n_valid', 'n_test'])

        bb = dset(dsetname)
        assert aa.meta == bb.meta

        tasks.assert_classification(*aa.classification_task())
        tasks.assert_latent_structure(aa.latent_structure_task())
示例#4
0
    def test_assert_latent_structure(self):
        # things that work:
        tasks.assert_latent_structure(rnd('float32', 4, 2))
        tasks.assert_latent_structure(rnd('float64', 11, 1))
        tasks.assert_latent_structure(rnd('float64', 11, 1), 11)

        # things that break:
        self.assertRaises(AssertionError, tasks.assert_latent_structure,
                rnd('int8', 4, 2))        # X not float
        self.assertRaises(AssertionError, tasks.assert_latent_structure,
                rnd('float32', 4, 2, 2))  # X wrong rank
        self.assertRaises(AssertionError, tasks.assert_latent_structure,
                rnd('float64', 4))        # X wrong rank
        self.assertRaises(AssertionError, tasks.assert_latent_structure,
                rnd('float64', 4, 3), 5)  # N mismatch
示例#5
0
def test_MNIST_latent_structure():
    M = mnist.MNIST()  # just make sure we can create the class
    M.DOWNLOAD_IF_MISSING = False
    X = M.latent_structure_task()
    tasks.assert_latent_structure(X, 70000)
示例#6
0
def test_latent_structure():
    cifar = cifar10.CIFAR10()  # just make sure we can create the class
    cifar.DOWNLOAD_IF_MISSING = False
    X = cifar.latent_structure_task()
    tasks.assert_latent_structure(X, 60000)
def test_MNIST_latent_structure():
    M = mnist.MNIST()  # just make sure we can create the class
    M.DOWNLOAD_IF_MISSING = False
    X = M.latent_structure_task()
    tasks.assert_latent_structure(X, 70000)
示例#8
0
def test_latent_structure():
    cifar = cifar10.CIFAR10()  # just make sure we can create the class
    cifar.DOWNLOAD_IF_MISSING = False
    X = cifar.latent_structure_task()
    tasks.assert_latent_structure(X, 60000)
    assert aa.meta[10000] == dict(id=10000, label=3, split='valid')
    assert aa.meta[11999] == dict(id=11999, label=3, split='valid')
    assert aa.meta[12000] == dict(id=12000, label=7, split='test')
    assert aa.meta[50000] == dict(id=50000, label=3, split='test')
    assert aa.meta[61989] == dict(id=61989, label=4, split='test')
    assert len(aa.meta) == 62000

    bb = dset(dsetname)
    assert bb.meta == aa.meta

def test_several():
    dsetnames = ['MNIST_Basic',
            'MNIST_BackgroundImages',
            'MNIST_BackgroundRandom',
            'Rectangles',
            'RectanglesImages',
            'Convex']
    dsetnames.extend(['MNIST_Noise%i' % i for i in range(1,7)])
    for dsetname in dsetnames:

        aa = dset(dsetname)
        assert len(aa.meta) == sum(
                [aa.descr[s] for s in 'n_train', 'n_valid', 'n_test'])

        bb = dset(dsetname)
        assert aa.meta == bb.meta

        tasks.assert_classification(*aa.classification_task())
        tasks.assert_latent_structure(aa.latent_structure_task())