def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.train_loss_heatmap = AverageMeter() self.train_loss_associate = AverageMeter() self.val_losses = AverageMeter() self.val_loss_heatmap = AverageMeter() self.val_loss_associate = AverageMeter() self.pose_visualizer = PoseVisualizer(configer) self.pose_loss_manager = PoseLossManager(configer) self.pose_model_manager = PoseModelManager(configer) self.pose_data_loader = PoseDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.optim_scheduler = OptimScheduler(configer) self.heatmap_generator = HeatmapGenerator(configer) self.paf_generator = PafGenerator(configer) self.data_transformer = DataTransformer(configer) self.pose_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self._init_model()
def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.pose_vis = PoseVisualizer(configer) self.pose_model_manager = PoseModelManager(configer) self.pose_data_loader = PoseDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.data_transformer = DataTransformer(configer) self.heatmap_generator = HeatmapGenerator(configer) self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda') self.pose_net = None self._init_model()
def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.seg_visualizer = SegVisualizer(configer) self.seg_parser = SegParser(configer) self.seg_model_manager = SegModelManager(configer) self.seg_data_loader = SegDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.data_transformer = DataTransformer(configer) self.device = torch.device('cpu' if self.configer.get('gpu') is None else 'cuda') self.seg_net = None self._init_model()
def our_collate(batch, data_keys=None, configer=None, trans_dict=None): transposed = [list(sample) for sample in zip(*batch)] new_transposed = [] index = 0 for key in DATA_KEYS_SEQ: if key in data_keys: new_transposed.append(transposed[index]) index += 1 else: new_transposed.append(None) new_transposed.append(trans_dict) data_dict = DataTransformer(configer)(*new_transposed) return data_dict
def __init__(self, configer): self.configer = configer self.blob_helper = BlobHelper(configer) self.det_visualizer = DetVisualizer(configer) self.det_parser = DetParser(configer) self.det_model_manager = DetModelManager(configer) self.det_data_loader = DetDataLoader(configer) self.module_utilizer = ModuleUtilizer(configer) self.data_transformer = DataTransformer(configer) self.ssd_priorbox_layer = SSDPriorBoxLayer(configer) self.ssd_target_generator = SSDTargetGenerator(configer) self.device = torch.device( 'cpu' if self.configer.get('gpu') is None else 'cuda') self.det_net = None self._init_model()
def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.seg_running_score = SegRunningScore(configer) self.seg_visualizer = SegVisualizer(configer) self.seg_loss_manager = SegLossManager(configer) self.module_utilizer = ModuleUtilizer(configer) self.data_transformer = DataTransformer(configer) self.seg_model_manager = SegModelManager(configer) self.seg_data_loader = SegDataLoader(configer) self.optim_scheduler = OptimScheduler(configer) self.seg_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self._init_model()
def __init__(self, configer): self.configer = configer self.batch_time = AverageMeter() self.data_time = AverageMeter() self.train_losses = AverageMeter() self.val_losses = AverageMeter() self.det_visualizer = DetVisualizer(configer) self.det_loss_manager = DetLossManager(configer) self.det_model_manager = DetModelManager(configer) self.det_data_loader = DetDataLoader(configer) self.ssd_target_generator = SSDTargetGenerator(configer) self.ssd_priorbox_layer = SSDPriorBoxLayer(configer) self.det_running_score = DetRunningScore(configer) self.module_utilizer = ModuleUtilizer(configer) self.optim_scheduler = OptimScheduler(configer) self.data_transformer = DataTransformer(configer) self.det_net = None self.train_loader = None self.val_loader = None self.optimizer = None self.scheduler = None self._init_model()
def _default_collate(batch, configer=None,): transposed = [list(sample) for sample in zip(*batch)] return [DataTransformer(configer).stack(item, 0) for item in transposed]