normTransform = transforms.Normalize(mean_vector, std_vector) if not args.pre_loaded_training_dataset: # training dataset, created on the fly at each epoch # training data, big data (520,520) rescaled to 256x256 to fit the fixed input of network, # then pre-processing is applied here(whereas in GLUNet, it is within the function) source_transforms = transforms.Compose([transforms.ToPILImage(), transforms.Resize(256), transforms.ToTensor(), normTransform]) pyramid_param = [256] # means that we get the ground-truth flow field at this size train_dataset = HomoAffTps_Dataset(image_path=args.training_data_dir, csv_file=osp.join('datasets', 'csv_files', 'homo_aff_tps_train_DPED_CityScape_ADE.csv'), transforms=source_transforms, transforms_target=source_transforms, pyramid_param=pyramid_param, get_flow=True, output_size=(520, 520)) # validation dataset pyramid_param = [256] val_dataset = HomoAffTps_Dataset(image_path=args.evaluation_data_dir, csv_file=osp.join('datasets', 'csv_files', 'homo_aff_tps_test_DPED_CityScape_ADE.csv'), transforms=source_transforms, transforms_target=source_transforms, pyramid_param=pyramid_param, get_flow=True, output_size=(520, 520))
os.makedirs(image_dir) if not os.path.exists(flow_dir): os.makedirs(flow_dir) # datasets source_img_transforms = transforms.Compose( [ArrayToTensor(get_float=False)]) target_img_transforms = transforms.Compose( [ArrayToTensor(get_float=False)]) pyramid_param = [520] # training dataset train_dataset = HomoAffTps_Dataset(image_path=args.image_data_path, csv_file=args.csv_path, transforms=source_img_transforms, transforms_target=target_img_transforms, pyramid_param=pyramid_param, get_flow=True, output_size=(520, 520)) test_dataloader = DataLoader(train_dataset, batch_size=1, shuffle=False, num_workers=1) pbar = tqdm(enumerate(test_dataloader), total=len(test_dataloader)) for i, minibatch in pbar: image_source = minibatch['source_image'] # shape is 1x3xHxW image_target = minibatch['target_image'] if image_source.shape[1] == 3: image_source = image_source.permute(0, 2, 3,