def make_mot_transforms(image_set, args): normalize = T.Compose([ T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800] if image_set == 'train' and not args.eval: return T.Compose([ T.RandomHorizontalFlip(), T.RandomSelect( T.RandomResize(scales, max_size=1333), T.Compose([ T.RandomResize([800, 1000, 1200]), # T.RandomSizeCrop(384, 600), T.RandomSizeCrop_MOT(800, 1200), T.RandomResize(scales, max_size=1333), ]) ), normalize, ]) if image_set == 'trainall' and not args.eval: return T.Compose([ T.RandomHorizontalFlip(), T.RandomSelect( T.RandomResize(scales, max_size=1333), T.Compose([ T.RandomResize([800, 1000, 1200]), # T.RandomSizeCrop(384, 600), T.RandomSizeCrop_MOT(800, 1200), T.RandomResize(scales, max_size=1333), ]) ), normalize, ]) if image_set == 'val' or args.eval: return T.Compose([ T.RandomResize([800], max_size=1333), normalize, ]) if image_set == 'test' or args.eval: return T.Compose([ T.RandomResize([800], max_size=1333), normalize, ]) raise ValueError(f'unknown {image_set}')
def make_mot_transforms(image_set): normalize = T.Compose([ T.ToTensor(), T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # scales = [480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800] scales = [480, 512, 544] if image_set == 'train': return T.Compose([ T.RandomHorizontalFlip(), T.RandomSelect( T.RandomResize(scales, max_size=960), T.Compose([ T.RandomResize([400, 500, 600]), # T.RandomSizeCrop(384, 600), T.RandomSizeCrop_MOT(384, 600), T.RandomResize(scales, max_size=960), ])), normalize, ]) if image_set == 'val': return T.Compose([ T.RandomResize([540], max_size=960), normalize, ]) if image_set == 'test': return T.Compose([ T.RandomResize([540], max_size=960), normalize, ]) raise ValueError(f'unknown {image_set}')