示例#1
0
文件: runbench.py 项目: lcreyes/GI
def run_benchmark(config, classifiers, classifiers_gridparameters):
    """ Runs the benchmark code, see voya_config_example for argument explanation
    """

    default_config = {
        "data_file": None,  # input data
        "test_df": None,  # instead of data_file, give split data
        "train_df": None,

        "out_path": None,
        "num_folds": 5,
        "test_size": 0.2,
        "num_cores": 1,
        "pu_learning": False,
        "pu_rand_samp_frac": False,
        "verbosity": 0,
        "random_forest_tree_plot": False,
        "auc_folds": 1,
        'u_to_p_ratio': False,
        'ranking_Frac': None,
        'include_neg_inTrain': True,
        'grisearch_metric': 'AUC',
    }

    default_config.update(config)
    config = default_config

    set_verbosity_level(config["verbosity"])

    voya_logger.info("Starting Benchmark")

    out_path = config['out_path']
    if out_path is not None:
        if not os.path.isdir(out_path):
            os.makedirs(out_path)


    # If we are given the test / train sets explicitly
    test_df = config["test_df"]
    train_df = config["train_df"]
    if test_df is not None and train_df is not None:
        y_test, X_test = datasetup.split_df_labels_features(test_df)
        y_train, X_train = datasetup.split_df_labels_features(train_df)
    elif config["data_file"] is not None:  # or load all the data and auto split
        voya_logger.info('loading data from: {}'.format(config['data_file']))

        try:
            df = datasetup.load_data(config['data_file'])
        except IOError:  # file doesnt exist, try seeing is its a df instead
            df = config['data_file']

        voya_logger.info("Input data labels \n{}".format(df.label.value_counts()))

        try:
            datasetup.scale_dataframe_features(df)
        except TypeError:  # Got a string as the DF (after IOError)
            raise VoyaConfigError('data_file is not a valid path to a file or a Pandas DF, got {}'.format(df))

        if config["pu_learning"]:  # input of positive, negative and unlabeled labels (1, -1, 0)
            voya_logger.info("PU Learning Mode On")

            if config["u_to_p_ratio"]:
                df = datasetup.downsample_pu_df(df, config["u_to_p_ratio"])

            df_test, df_train = datasetup.split_test_train_df_pu(df, config['test_size'],)
            assert set(df_test['label'].unique()) == set((1, 0))
            
            y_test, X_test = datasetup.split_df_labels_features(df_test)
            y_train, X_train = datasetup.split_df_labels_features(df_train)

        else:  # input of positive and negative (i.e 1, 0)

            X, y = datasetup.split_df_labels_features(df)
            X_train, y_train, X_test, y_test = datasetup.get_stratifed_data(y, X, config['test_size'])
    else:
        raise ValueError("You must give either `test_df` and `train_df` OR `data_file` in config")

    results_table_rows = {}  # each row is a dict with column_name: value

    for clf_name, clf_notoptimized in classifiers.iteritems():
        voya_logger.info("Running {}".format(clf_name))

        clf_results = {'clf_name': clf_name}

        param_grid = classifiers_gridparameters[clf_name]

        if param_grid is None:
            voya_logger.info('Skipping grid search for {}'.format(clf_name))
            voya_logger.debug("clf_notoptimized {}".format(clf_notoptimized))

            clf_fitted = clf_notoptimized.fit(X_train, y_train)

        else:
            voya_logger.info('Performing grid search for {}'.format(clf_name))
            skf = sklearn.cross_validation.StratifiedKFold(y_train, n_folds=config['num_folds'])

            ranking = voya_plotter.PrInRanking(config['ranking_Frac'], config['desired_retention'])
            if (config['gridsearch_metric'] == 'PosRate'):
                clf = GridSearchCV(estimator=clf_notoptimized, param_grid=param_grid, cv=skf, scoring=ranking.pr_in_ranking,
                               n_jobs=config['num_cores'])
            elif (config['gridsearch_metric'] == 'Frac'):
                clf = GridSearchCV(estimator=clf_notoptimized, param_grid=param_grid, cv=skf, scoring=ranking.frac_to_Xpercent,
                               n_jobs=config['num_cores'])
            else:
                clf = GridSearchCV(estimator=clf_notoptimized, param_grid=param_grid, cv=skf, scoring='roc_auc',
                               n_jobs=config['num_cores'])
                
                

            clf_fitted = clf.fit(X_train, y_train).best_estimator_
            clf_optimal_parameters = clf.best_params_
            clf_results['clf_optimal_parameters'] = clf_optimal_parameters
            voya_logger.info('Optimal parameters are {}'.format(clf_optimal_parameters))

        voya_logger.debug('X = {}'.format(clf_fitted))

        y_pred = clf_fitted.predict_proba(X_test)[:, 1]

        y_pred_label = clf_fitted.predict(X_test)
        
            
        clf_results.update({
            'y_pred': y_pred,
            'y_pred_label': y_pred_label,
            'clf': clf_fitted,
            'clf_notoptimized': clf_notoptimized,
            'X_train': X_train,
            'y_train': y_train,
            'X_test': X_test,
            'y_test': y_test,
            'param_grid': param_grid,
        })

        voya_logger.info("Benchmarking {}".format(clf_name))
        benchmarks.all_benchmarks(clf_results, out_path, config["auc_folds"],  # TODO (ryan) split this up now into benchmarks and plots?
                                  config['ranking_Frac'])
                                                              
        if out_path is not None:  # TODO (ryan) non conforming plots, move to benchmarks
            if config["random_forest_tree_plot"] and isinstance(clf_fitted, sklearn.ensemble.RandomForestClassifier):
                voya_logger.debug('Generating random forrest plot')
                # TODO (ryan) weve hardcoded '2' where the feature start several times, export to var?
                feature_names = [colname.replace('url/tech/', '').replace('cid/tech/', '') for colname in
                                 df.columns[2:]]
                voya_plotter.plot_trees(clf_results['clf'], feature_names)

        results_table_rows[clf_name] = clf_results


    voya_logger.info("\n#######\nResults\n#######")
    num_positives_y_train = y_train.sum()
    voya_logger.info("Training: positives = {}, negatives/unlabelled={}".format(num_positives_y_train,
                                                                                len(y_train) - num_positives_y_train))
    num_positives_y_test = y_test.sum()
    voya_logger.info(
        "Testing: positives = {}, negatives={}".format(num_positives_y_test, len(y_test) - num_positives_y_test))

    results_table = benchmarks.results_dict_to_data_frame(results_table_rows)
    voya_logger.info('\n{}'.format(results_table))

    return results_table_rows
示例#2
0
文件: runbench.py 项目: lcreyes/GI
def run_search_benchmark(config, classifiers, classifiers_gridparameters):
    """ This works like run_bench except it calls runbench multiple times varying the fraction of unlabelled in the
    sample.

    Currently PU learning only, varies the fraction of unlabelled in the classifier as a function of positive

    Search parameters are set in the config dictionary. See the code for required config (in addition to that in runbench).

    :param config:
    :param classifiers:
    :param classifiers_gridparameters:
    :return:
    """

    default_config = {
        "data_file": None,  # input data
        "test_df": None,  # instead of data_file, give split data
        "train_df": None,

        "out_path": None,
        "num_folds": 5,
        "test_size": 0.2,
        "num_cores": 3,
        "pu_learning": False,
        "pu_rand_samp_frac": False,
        "verbosity": 0,
        "random_forest_tree_plot": False,
        "auc_folds": 1,
        'u_to_p_ratio': False,

        'voya_mode': 'pusearch',
        'search_results_file': '',  # csv file that records the results of each run
        'soft_search_run': True,  #  if True builds on the previous results, if false overwrites the results file
        'search_range': (0.5, 1, 2),  # range of values to run over
        'runs_per_search': 3,  # number of times to run the search per parameter per classifier
        'search_live_plot': False,
        'constant_test_train': True,  # otherwise will resplit every run_per_search
        'test_neg_to_pos_ratio': None,
        'includes_neg_inTrain': False,
    }

    default_config.update(config)
    config = default_config

    out_path = config['out_path']
    if out_path is not None:
        if not os.path.isdir(out_path):
            os.makedirs(out_path)

    if config['constant_test_train']:  # Split test / train so we have a constant testing set
        try:
            df = datasetup.load_data(config['data_file'])
        except IOError:  # file doesnt exist, try seeing is its a df instead
            df = config['data_file']

        df_test, df_train = datasetup.split_test_train_df_pu(df, config['test_size'], 
                                                             test_neg_to_pos_ratio=config['test_neg_to_pos_ratio'],
                                                             includes_neg_inTrain=config['includes_neg_inTrain'])

        config["test_df"] = df_test
        config["train_df"] = df_train
        config["data_file"] = None

        if not config['runs_per_search'] == 1:  # no point doing more if we have a constant test/train
            voya_logger.warning('Setting runs_per_search to 1 as constant_test_train is True, change auc_folds instead')
            config['runs_per_search'] = 1

    save_file = config['search_results_file']
    search_range = config['search_range']

    voya_logger.info('Starting search benchmark')

    if not os.path.exists(save_file) or not config['soft_search_run']:
        with open(save_file, 'wb') as f:
            if config['constant_test_train']:
                f.write('gamma, folds, clf, auc, auc_std, auc_stderr, ranking_Frac, local_auc, local_auc_std, local_auc_stderr, local_pr, frac_to_desRet, frac_to_desRet_stderr\n')
            else:
                f.write('gamma, clf, auc, local_pr, frac_to_desRet\n')

    fig = None

    for gamma_num, gamma in enumerate(search_range):  # gamma is a single value in the search range
        voya_logger.info('Running classifiers for gamma={} ({}/{})'.format(gamma, gamma_num + 1, len(search_range)))

        config.update({"u_to_p_ratio": gamma})

        if config['constant_test_train']:
            config["train_df"] = datasetup.downsample_pu_df(df_train, config["u_to_p_ratio"])

        results_dict = run_benchmark(config, classifiers, classifiers_gridparameters)

        # Output
        csv_output = []
        for clf_name in classifiers.keys():
            if config['auc_folds']>1:
                csv_row = (gamma, results_dict[clf_name]['auc_folds'], clf_name, results_dict[clf_name]['auc_score'], 
                           results_dict[clf_name]['auc_std'], results_dict[clf_name]['auc_std_err'], results_dict[clf_name]['ranking_Frac'],
                           results_dict[clf_name]['local_auc_score'], results_dict[clf_name]['local_auc_std'], 
                           results_dict[clf_name]['local_auc_std_err'], results_dict[clf_name]['local_pr'],
                           results_dict[clf_name]['frac_to_ret'], results_dict[clf_name]['frac_to_ret_stderr'])
            else:
                csv_row = (gamma, clf_name, results_dict[clf_name]['auc_score'], results_dict[clf_name]['local_pr'], results_dict[clf_name]['frac_to_ret'])

            csv_output.append(csv_row)

        with open(save_file, 'ab') as f:
            csv_f = csv.writer(f)
            csv_f.writerows(csv_output)

        if config['search_live_plot']:
            plt.clf()
            fig = voya_plotter.pu_search_result(save_file, fig)
            plt.draw()
     
        if out_path is not None: 
            voya_logger.info('Generating prVSranking all methods plot')
            voya_plotter.prVSranking_methodComparison(results_dict)
            plt.savefig(os.path.join(out_path, 'prVsRankComparison__Gamma__{}.png'.format(gamma)), bbox_inches='tight')