fig, AX = ge.figure(axes=(3, 1)) for i, color in enumerate(['blue', 'green', 'red']): array = calib[correc][color] array = (array - np.min(array)) / (np.max(array) - np.min(array)) def to_minimize(coefs): return np.sum(np.abs(array - func(lum, coefs))**2) residual = minimize(to_minimize, [1, 1], bounds=[(0.5, 2), (0.1, 3.)]) print('For %s and %s, gamma=' % (correc, color), residual.x[1]) # ge.title(AX[i], "a=%.2f, k=%.2f, $\gamma$=%.2f" % (residual.x[0], residual.x[1], residual.x[2]), color=getattr(ge, color), size='small') ge.title(AX[i], "k=%.2f, $\gamma$=%.2f" % (residual.x[0], residual.x[1]), color=getattr(ge, color), size='small') ge.scatter(lum, array, ax=AX[i], color=getattr(ge, color), label='data', ms=3) ge.plot(lum, func(lum, residual.x), ax=AX[i], lw=3, alpha=.5, color=getattr(ge, color), label='fit') ge.annotate(AX[i],
if sys.argv[-1] == 'syn-demo': from datavyz import nrnvyz, ges as ge _, neuron, SEGMENTS = initialize_sim(Model) vis = nrnvyz(SEGMENTS, ge=ge) fig, AX = ge.figure(axes=(len(NSYNs), 1), figsize=(.8, 1.2), wspace=0, left=0, top=0.3, bottom=0, right=0) for nsyn, ax in zip(NSYNs, AX): ge.title(ax, '$N_{syn}$=%i' % nsyn, size='xx-small') vis.plot_segments(SEGMENTS['comp_type'] != 'axon', bar_scale_args=dict(Ybar=50, Xbar_label='50um', Xbar=50, Ybar_label='', loc='top-right', xyLoc=(-110, 90), size='xx-small'), ax=ax) vis.add_dots(ax, loc_syn0 + np.arange(nsyn), 10, ge.orange) ge.show() elif sys.argv[-1] == 'run-demo': syn_loc0 = 9
] fig, AX = ge.figure(figsize=(.6, .6), axes=(int(len(file_list) / 8) + 1, 8)) n = 0 for fn, ax in zip(file_list, ge.flat(AX)): morpho = ntwk.Morphology.from_swc_file( os.path.join(args.directory, fn)) SEGMENTS = ntwk.morpho_analysis.compute_segments(morpho) colors = [ ge.green if comp_type == 'axon' else ge.red for comp_type in SEGMENTS['comp_type'] ] plot_nrn_shape(ge, SEGMENTS, colors=colors, ax=ax) ge.title(ax, fn.split('-')[0], bold=True, style='italic', size='') n += 1 while n < len(ge.flat(AX)): ge.flat(AX)[n].axis('off') n += 1 else: if args.movie_demo: t = np.arange(100) * 1e-3 Quant = np.array([.5*(1-np.cos(20*np.pi*t))*i/len(SEGMENT_LIST['xcoords']) \ for i in np.arange(len(SEGMENT_LIST['xcoords']))])*20-70 ani = show_animated_time_varying_trace( 1e3 * t, Quant, SEGMENT_LIST, fig,
vis.add_dots(ax, DIST, 50, ge.orange) ge.show() elif args.protocol == 'syn-number': tstop, t0_stim = 300, 20 if args.plot: data = load_dict( os.path.join('data', 'branco-syn-number-%s.npz' % suffix)) fig, AX = ge.figure(axes=(1, 2), figsize=(.7, 1), right=4., hspace=0.1, bottom=0.1) ge.title(AX[0], '%i to %i synapses (by 2)' % (N_PULSES[0], N_PULSES[-1])) for synapses_loc, label, ax in zip([PROX, DIST], ['prox', 'dist'], AX): for i in range(len(data['v-%s' % label])): ax.plot(data['t'], data['v-%s' % label][i], label=label, color='k', lw=1) ge.set_plot(ax, [], ylim=[-76, -45], xlim=[0, tstop]) ge.draw_bar_scales(ax, Xbar=50., Xbar_label='50ms', Ybar=5., Ybar_label='5mV',