示例#1
0
    def test_remap_labels_ignore_missing_labels_in_secondary_categories(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(id=1, annotations=[
                Label(0),
            ])
        ], categories={
            AnnotationType.label: LabelCategories.from_iterable(['a', 'b', 'c']),
            AnnotationType.points: PointsCategories.from_iterable([]), # all missing
            AnnotationType.mask: MaskCategories.generate(2) # no c color
        })

        target_dataset = Dataset.from_iterable([
            DatasetItem(id=1, annotations=[
                Label(0),
            ]),
        ], categories={
            AnnotationType.label: LabelCategories.from_iterable(['d', 'e', 'f']),
            AnnotationType.points: PointsCategories.from_iterable([]),
            AnnotationType.mask: MaskCategories.generate(2)
        })

        actual = transforms.RemapLabels(source_dataset,
            mapping={ 'a': 'd', 'b': 'e', 'c': 'f' }, default='delete')

        compare_datasets(self, target_dataset, actual)
示例#2
0
    def test_project_labels_maps_secondary_categories(self):
        source = Dataset.from_iterable([], categories={
            AnnotationType.label: LabelCategories.from_iterable([
                'a', 'b', # no parents
                ('c', 'a'), ('d', 'b') # have parents
            ]),
            AnnotationType.points: PointsCategories.from_iterable([
                (0, ['a']), (1, ['b']), (2, ['c'])
            ]),
            AnnotationType.mask: MaskCategories.generate(4)
        })

        expected = Dataset.from_iterable([], categories={
            AnnotationType.label: LabelCategories.from_iterable([
                ('c', 'a'), # must keep parent
                'a',
                'd' # must drop parent because it was removed
            ]),
            AnnotationType.points: PointsCategories.from_iterable([
                (0, ['c']), (1, ['a'])
            ]),
            AnnotationType.mask: MaskCategories(colormap={
                i: v for i, v in {
                    { 2: 0, 0: 1, 3: 2 }.get(k): v
                    for k, v in mask_tools.generate_colormap(4).items()
                }.items()
                if i is not None
            }),
        })

        actual = transforms.ProjectLabels(source, dst_labels=['c', 'a', 'd'])

        compare_datasets(self, expected, actual)
示例#3
0
    def test_project_labels_generates_colors_for_added_labels(self):
        source = Dataset.from_iterable([], categories={
            AnnotationType.label: LabelCategories.from_iterable(['a', 'b', 'c']),
            AnnotationType.mask: MaskCategories.generate(2)
        })

        actual = transforms.ProjectLabels(source, dst_labels=['a', 'c', 'd'])

        self.assertEqual((0, 0, 0), actual.categories()[AnnotationType.mask][0])
        self.assertNotIn(1, actual.categories()[AnnotationType.mask])
        self.assertIn(2, actual.categories()[AnnotationType.mask])
    def test_inplace_save_writes_only_updated_data(self):
        src_mask_cat = MaskCategories.generate(3, include_background=False)

        expected = Dataset.from_iterable(
            [
                DatasetItem(1,
                            subset='a',
                            image=np.ones((2, 1, 3)),
                            annotations=[Mask(np.ones((2, 1)), label=2)]),
                DatasetItem(2, subset='a', image=np.ones((3, 2, 3))),
                DatasetItem(2, subset='b'),
            ],
            categories=Camvid.make_camvid_categories(
                OrderedDict([
                    ('background', (0, 0, 0)),
                    ('a', src_mask_cat.colormap[0]),
                    ('b', src_mask_cat.colormap[1]),
                ])))

        with TestDir() as path:
            dataset = Dataset.from_iterable(
                [
                    DatasetItem(1,
                                subset='a',
                                image=np.ones((2, 1, 3)),
                                annotations=[Mask(np.ones((2, 1)), label=1)]),
                    DatasetItem(2, subset='b'),
                    DatasetItem(3,
                                subset='c',
                                image=np.ones((2, 2, 3)),
                                annotations=[Mask(np.ones((2, 2)), label=0)]),
                ],
                categories={
                    AnnotationType.label:
                    LabelCategories.from_iterable(['a', 'b']),
                    AnnotationType.mask: src_mask_cat
                })
            dataset.export(path, 'camvid', save_images=True)

            dataset.put(DatasetItem(2, subset='a', image=np.ones((3, 2, 3))))
            dataset.remove(3, 'c')
            dataset.save(save_images=True)

            self.assertEqual(
                {'a', 'aannot', 'a.txt', 'b.txt', 'label_colors.txt'},
                set(os.listdir(path)))
            self.assertEqual({'1.jpg', '2.jpg'},
                             set(os.listdir(osp.join(path, 'a'))))
            compare_datasets(self,
                             expected,
                             Dataset.import_from(path, 'camvid'),
                             require_images=True)
示例#5
0
    def test_inplace_save_writes_only_updated_data(self):
        src_mask_cat = MaskCategories.generate(2, include_background=False)

        expected = Dataset.from_iterable([
            DatasetItem(1, subset='a', image=np.ones((2, 1, 3)),
                annotations=[
                    Mask(np.ones((2, 1)), label=2, id=1)
                ]),
            DatasetItem(2, subset='a', image=np.ones((3, 2, 3))),

            DatasetItem(2, subset='b', image=np.ones((2, 2, 3)),
                annotations=[
                    Mask(np.ones((2, 2)), label=1, id=1)
                ]),
        ], categories=Cityscapes.make_cityscapes_categories(OrderedDict([
            ('a', src_mask_cat.colormap[0]),
            ('b', src_mask_cat.colormap[1]),
        ])))

        with TestDir() as path:
            dataset = Dataset.from_iterable([
                DatasetItem(1, subset='a', image=np.ones((2, 1, 3)),
                    annotations=[
                        Mask(np.ones((2, 1)), label=1)
                    ]),
                DatasetItem(2, subset='b', image=np.ones((2, 2, 3)),
                    annotations=[
                        Mask(np.ones((2, 2)), label=0)
                    ]),
                DatasetItem(3, subset='c', image=np.ones((2, 3, 3)),
                    annotations=[
                        Mask(np.ones((2, 2)), label=0)
                    ]),

            ], categories={
                AnnotationType.label: LabelCategories.from_iterable(['a', 'b']),
                AnnotationType.mask: src_mask_cat
            })
            dataset.export(path, 'cityscapes', save_images=True)

            dataset.put(DatasetItem(2, subset='a', image=np.ones((3, 2, 3))))
            dataset.remove(3, 'c')
            dataset.save(save_images=True)

            self.assertEqual({'a', 'b'},
                set(os.listdir(osp.join(path, 'gtFine'))))
            self.assertEqual({
                    '1_gtFine_color.png', '1_gtFine_instanceIds.png',
                    '1_gtFine_labelIds.png'
                },
                set(os.listdir(osp.join(path, 'gtFine', 'a'))))
            self.assertEqual({
                    '2_gtFine_color.png', '2_gtFine_instanceIds.png',
                    '2_gtFine_labelIds.png'
                },
                set(os.listdir(osp.join(path, 'gtFine', 'b'))))
            self.assertEqual({'a', 'b'},
                set(os.listdir(osp.join(path, 'imgsFine', 'leftImg8bit'))))
            self.assertEqual({'1_leftImg8bit.png', '2_leftImg8bit.png'},
                set(os.listdir(osp.join(path, 'imgsFine', 'leftImg8bit', 'a'))))
            self.assertEqual({'2_leftImg8bit.png'},
                set(os.listdir(osp.join(path, 'imgsFine', 'leftImg8bit', 'b'))))
            compare_datasets(self, expected,
                Dataset.import_from(path, 'cityscapes'),
                require_images=True, ignored_attrs=IGNORE_ALL)
示例#6
0
    def test_can_compare_projects(self): # just a smoke test
        label_categories1 = LabelCategories.from_iterable(['x', 'a', 'b', 'y'])
        mask_categories1 = MaskCategories.generate(len(label_categories1))

        point_categories1 = PointsCategories()
        for index, _ in enumerate(label_categories1.items):
            point_categories1.add(index, ['cat1', 'cat2'], joints=[[0, 1]])

        dataset1 = Dataset.from_iterable([
            DatasetItem(id=100, subset='train', image=np.ones((10, 6, 3)),
                annotations=[
                    Caption('hello', id=1),
                    Caption('world', id=2, group=5),
                    Label(2, id=3, attributes={
                        'x': 1,
                        'y': '2',
                    }),
                    Bbox(1, 2, 3, 4, label=0, id=4, z_order=1, attributes={
                        'score': 1.0,
                    }),
                    Bbox(5, 6, 7, 8, id=5, group=5),
                    Points([1, 2, 2, 0, 1, 1], label=0, id=5, z_order=4),
                    Mask(label=3, id=5, z_order=2, image=np.ones((2, 3))),
                ]),
            DatasetItem(id=21, subset='train',
                annotations=[
                    Caption('test'),
                    Label(2),
                    Bbox(1, 2, 3, 4, label=2, id=42, group=42)
                ]),

            DatasetItem(id=2, subset='val',
                annotations=[
                    PolyLine([1, 2, 3, 4, 5, 6, 7, 8], id=11, z_order=1),
                    Polygon([1, 2, 3, 4, 5, 6, 7, 8], id=12, z_order=4),
                ]),

            DatasetItem(id=42, subset='test',
                attributes={'a1': 5, 'a2': '42'}),

            DatasetItem(id=42),
            DatasetItem(id=43, image=Image(path='1/b/c.qq', size=(2, 4))),
        ], categories={
            AnnotationType.label: label_categories1,
            AnnotationType.mask: mask_categories1,
            AnnotationType.points: point_categories1,
        })


        label_categories2 = LabelCategories.from_iterable(['a', 'b', 'x', 'y'])
        mask_categories2 = MaskCategories.generate(len(label_categories2))

        point_categories2 = PointsCategories()
        for index, _ in enumerate(label_categories2.items):
            point_categories2.add(index, ['cat1', 'cat2'], joints=[[0, 1]])

        dataset2 = Dataset.from_iterable([
            DatasetItem(id=100, subset='train', image=np.ones((10, 6, 3)),
                annotations=[
                    Caption('hello', id=1),
                    Caption('world', id=2, group=5),
                    Label(2, id=3, attributes={
                        'x': 1,
                        'y': '2',
                    }),
                    Bbox(1, 2, 3, 4, label=1, id=4, z_order=1, attributes={
                        'score': 1.0,
                    }),
                    Bbox(5, 6, 7, 8, id=5, group=5),
                    Points([1, 2, 2, 0, 1, 1], label=0, id=5, z_order=4),
                    Mask(label=3, id=5, z_order=2, image=np.ones((2, 3))),
                ]),
            DatasetItem(id=21, subset='train',
                annotations=[
                    Caption('test'),
                    Label(2),
                    Bbox(1, 2, 3, 4, label=3, id=42, group=42)
                ]),

            DatasetItem(id=2, subset='val',
                annotations=[
                    PolyLine([1, 2, 3, 4, 5, 6, 7, 8], id=11, z_order=1),
                    Polygon([1, 2, 3, 4, 5, 6, 7, 8], id=12, z_order=4),
                ]),

            DatasetItem(id=42, subset='test',
                attributes={'a1': 5, 'a2': '42'}),

            DatasetItem(id=42),
            DatasetItem(id=43, image=Image(path='1/b/c.qq', size=(2, 4))),
        ], categories={
            AnnotationType.label: label_categories2,
            AnnotationType.mask: mask_categories2,
            AnnotationType.points: point_categories2,
        })

        with TestDir() as test_dir:
            with DiffVisualizer(save_dir=test_dir,
                        comparator=DistanceComparator(iou_threshold=0.8),
                    ) as visualizer:
                visualizer.save(dataset1, dataset2)

            self.assertNotEqual(0, os.listdir(osp.join(test_dir)))