示例#1
0
 def categories(self):
     label_cat = LabelCategories()
     for label in range(10):
         label_cat.add('label_' + str(label))
     return {
         AnnotationType.label: label_cat,
     }
示例#2
0
 def _generate_classification_dataset(self, config, num_duplicate):
     subsets = ["train", "val", "test"]
     dummy_images = [
         np.random.randint(0, 255, size=(224, 224, 3))
         for _ in range(num_duplicate)
     ]
     iterable = []
     label_cat = LabelCategories()
     idx = 0
     for label_id, label in enumerate(config.keys()):
         label_cat.add(label, attributes=None)
         num_item = config[label]
         for subset in subsets:
             for _ in range(num_item):
                 idx += 1
                 iterable.append(
                     DatasetItem(
                         idx,
                         subset=subset,
                         annotations=[Label(label_id)],
                         image=Image(data=dummy_images[idx %
                                                       num_duplicate]),
                     ))
     categories = {AnnotationType.label: label_cat}
     dataset = Dataset.from_iterable(iterable, categories)
     return dataset
示例#3
0
 def categories(self):
     label_cat = LabelCategories()
     for label in VOC.VocLabel:
         label_cat.add(label.name)
     return {
         AnnotationType.label: label_cat,
     }
示例#4
0
 def categories(self):
     label_categories = LabelCategories()
     for i in range(10):
         label_categories.add(str(i))
     return {
         AnnotationType.label: label_categories,
     }
示例#5
0
 def categories(self):
     label_categories = LabelCategories()
     label_categories.add('label1', attributes={'a1', 'a2'})
     label_categories.add('label2')
     return {
         AnnotationType.label: label_categories,
     }
示例#6
0
 def categories(self):
     label_cat = LabelCategories()
     label_cat.add('Label_1')  # should become lowercase
     label_cat.add('label_2')
     return {
         AnnotationType.label: label_cat,
     }
示例#7
0
    def _make_label_id_map(self, src_label_cat, label_mapping, default_action):
        dst_label_cat = LabelCategories(attributes=src_label_cat.attributes)
        id_mapping = {}
        for src_index, src_label in enumerate(src_label_cat.items):
            dst_label = label_mapping.get(src_label.name)
            if not dst_label and default_action == self.DefaultAction.keep:
                dst_label = src_label.name # keep unspecified as is
            if not dst_label:
                continue

            dst_index = dst_label_cat.find(dst_label)[0]
            if dst_index is None:
                dst_label_cat.add(dst_label,
                    src_label.parent, src_label.attributes)
                dst_index = dst_label_cat.find(dst_label)[0]
            id_mapping[src_index] = dst_index

        if log.getLogger().isEnabledFor(log.DEBUG):
            log.debug("Label mapping:")
            for src_id, src_label in enumerate(src_label_cat.items):
                if id_mapping.get(src_id):
                    log.debug("#%s '%s' -> #%s '%s'",
                        src_id, src_label.name, id_mapping[src_id],
                        dst_label_cat.items[id_mapping[src_id]].name
                    )
                else:
                    log.debug("#%s '%s' -> <deleted>", src_id, src_label.name)

        self._map_id = lambda src_id: id_mapping.get(src_id, None)
        self._categories[AnnotationType.label] = dst_label_cat
def make_camvid_categories(label_map=None):
    if label_map is None:
        label_map = CamvidLabelMap

    # There must always be a label with color (0, 0, 0) at index 0
    bg_label = find(label_map.items(), lambda x: x[1] == (0, 0, 0))
    if bg_label is not None:
        bg_label = bg_label[0]
    else:
        bg_label = 'background'
        if bg_label not in label_map:
            has_colors = any(v is not None for v in label_map.values())
            color = (0, 0, 0) if has_colors else None
            label_map[bg_label] = color
    label_map.move_to_end(bg_label, last=False)

    categories = {}
    label_categories = LabelCategories()
    for label, desc in label_map.items():
        label_categories.add(label)
    categories[AnnotationType.label] = label_categories

    has_colors = any(v is not None for v in label_map.values())
    if not has_colors:  # generate new colors
        colormap = generate_colormap(len(label_map))
    else:  # only copy defined colors
        label_id = lambda label: label_categories.find(label)[0]
        colormap = {
            label_id(name): (desc[0], desc[1], desc[2])
            for name, desc in label_map.items()
        }
    mask_categories = MaskCategories(colormap)
    mask_categories.inverse_colormap  # pylint: disable=pointless-statement
    categories[AnnotationType.mask] = mask_categories
    return categories
示例#9
0
    def _load_categories(parsed):
        categories = {}

        parsed_label_cat = parsed['categories'].get(AnnotationType.label.name)
        if parsed_label_cat:
            label_categories = LabelCategories()
            for item in parsed_label_cat['labels']:
                label_categories.add(item['name'], parent=item['parent'])

            categories[AnnotationType.label] = label_categories

        parsed_mask_cat = parsed['categories'].get(AnnotationType.mask.name)
        if parsed_mask_cat:
            colormap = {}
            for item in parsed_mask_cat['colormap']:
                colormap[int(item['label_id'])] = \
                    (item['r'], item['g'], item['b'])

            mask_categories = MaskCategories(colormap=colormap)
            categories[AnnotationType.mask] = mask_categories

        parsed_points_cat = parsed['categories'].get(
            AnnotationType.points.name)
        if parsed_points_cat:
            point_categories = PointsCategories()
            for item in parsed_points_cat['items']:
                point_categories.add(int(item['label_id']),
                                     item['labels'],
                                     joints=item['joints'])

            categories[AnnotationType.points] = point_categories

        return categories
示例#10
0
 def categories(self):
     label_cat = LabelCategories()
     label_cat.add(VOC.VocLabel.cat.name)
     label_cat.add('non_voc_label')
     return {
         AnnotationType.label: label_cat,
     }
示例#11
0
def make_voc_categories(label_map=None):
    if label_map is None:
        label_map = make_voc_label_map()

    categories = {}

    label_categories = LabelCategories()
    label_categories.attributes.update(['difficult', 'truncated', 'occluded'])

    for label, desc in label_map.items():
        label_categories.add(label, attributes=desc[2])
    for part in OrderedDict((k, None) for k in chain(
            *(desc[1] for desc in label_map.values()))):
        label_categories.add(part)
    categories[AnnotationType.label] = label_categories

    has_colors = any(v[0] is not None for v in label_map.values())
    if not has_colors: # generate new colors
        colormap = generate_colormap(len(label_map))
    else: # only copy defined colors
        label_id = lambda label: label_categories.find(label)[0]
        colormap = { label_id(name): desc[0]
            for name, desc in label_map.items() if desc[0] is not None }
    mask_categories = MaskCategories(colormap)
    mask_categories.inverse_colormap # pylint: disable=pointless-statement
    categories[AnnotationType.mask] = mask_categories

    return categories
示例#12
0
 def categories(self):
     label_cat = LabelCategories()
     label_cat.add('Label_1')
     label_cat.add('label_2')
     return {
         AnnotationType.label: label_cat,
     }
示例#13
0
    def test_can_convert_polygons_to_mask(self):
        label_categories = LabelCategories()
        for i in range(10):
            label_categories.add(str(i))

        class SrcTestExtractor(Extractor):
            def __iter__(self):
                return iter([
                    DatasetItem(id=1,
                                image=np.zeros((6, 10, 3)),
                                annotations=[
                                    Polygon([0, 0, 4, 0, 4, 4],
                                            label=3,
                                            id=4,
                                            group=4),
                                    Polygon([5, 0, 9, 0, 5, 5],
                                            label=3,
                                            id=4,
                                            group=4),
                                ]),
                ])

            def categories(self):
                return {AnnotationType.label: label_categories}

        class DstTestExtractor(Extractor):
            def __iter__(self):
                return iter([
                    DatasetItem(
                        id=1,
                        image=np.zeros((6, 10, 3)),
                        annotations=[
                            Mask(
                                np.array(
                                    [[0, 1, 1, 1, 0, 1, 1, 1, 1, 0],
                                     [0, 0, 1, 1, 0, 1, 1, 1, 0, 0],
                                     [0, 0, 0, 1, 0, 1, 1, 0, 0, 0],
                                     [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
                                     [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                     [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                                    # only internal fragment (without the border),
                                    # but not everywhere...
                                ),
                                attributes={'is_crowd': True},
                                label=3,
                                id=4,
                                group=4),
                        ],
                        attributes={'id': 1}),
                ])

            def categories(self):
                return {AnnotationType.label: label_categories}

        with TestDir() as test_dir:
            self._test_save_and_load(
                SrcTestExtractor(),
                CocoInstancesConverter(segmentation_mode='mask'),
                test_dir,
                target_dataset=DstTestExtractor())
示例#14
0
    def test_can_crop_covered_segments(self):
        label_categories = LabelCategories()
        for i in range(10):
            label_categories.add(str(i))

        class SrcTestExtractor(Extractor):
            def __iter__(self):
                return iter([
                    DatasetItem(id=1,
                                image=np.zeros((5, 5, 3)),
                                annotations=[
                                    Mask(np.array(
                                        [[0, 0, 1, 1, 1], [0, 0, 1, 1, 1],
                                         [1, 1, 0, 1, 1], [1, 1, 1, 0, 0],
                                         [1, 1, 1, 0, 0]], ),
                                         label=2,
                                         id=1,
                                         z_order=0),
                                    Polygon([1, 1, 4, 1, 4, 4, 1, 4],
                                            label=1,
                                            id=2,
                                            z_order=1),
                                ]),
                ])

            def categories(self):
                return {AnnotationType.label: label_categories}

        class DstTestExtractor(Extractor):
            def __iter__(self):
                return iter([
                    DatasetItem(id=1,
                                image=np.zeros((5, 5, 3)),
                                annotations=[
                                    Mask(np.array(
                                        [[0, 0, 1, 1, 1], [0, 0, 0, 0, 1],
                                         [1, 0, 0, 0, 1], [1, 0, 0, 0, 0],
                                         [1, 1, 1, 0, 0]], ),
                                         attributes={'is_crowd': True},
                                         label=2,
                                         id=1,
                                         group=1),
                                    Polygon([1, 1, 4, 1, 4, 4, 1, 4],
                                            label=1,
                                            id=2,
                                            group=2,
                                            attributes={'is_crowd': False}),
                                ],
                                attributes={'id': 1}),
                ])

            def categories(self):
                return {AnnotationType.label: label_categories}

        with TestDir() as test_dir:
            self._test_save_and_load(SrcTestExtractor(),
                                     CocoInstancesConverter(crop_covered=True),
                                     test_dir,
                                     target_dataset=DstTestExtractor())
    def _load_categories(names_path):
        label_categories = LabelCategories()

        with open(names_path, 'r') as f:
            for label in f:
                label_categories.add(label.strip())

        return label_categories
示例#16
0
    def test_can_convert_masks_to_polygons(self):
        label_categories = LabelCategories()
        for i in range(10):
            label_categories.add(str(i))

        class SrcExtractor(Extractor):
            def __iter__(self):
                return iter([
                    DatasetItem(id=1,
                                image=np.zeros((5, 10, 3)),
                                annotations=[
                                    Mask(np.array([
                                        [0, 1, 1, 1, 0, 1, 1, 1, 1, 0],
                                        [0, 0, 1, 1, 0, 1, 1, 1, 0, 0],
                                        [0, 0, 0, 1, 0, 1, 1, 0, 0, 0],
                                        [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
                                        [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                    ]),
                                         label=3,
                                         id=4,
                                         group=4),
                                ]),
                ])

            def categories(self):
                return {AnnotationType.label: label_categories}

        class DstExtractor(Extractor):
            def __iter__(self):
                return iter([
                    DatasetItem(
                        id=1,
                        image=np.zeros((5, 10, 3)),
                        annotations=[
                            Polygon([3.0, 2.5, 1.0, 0.0, 3.5, 0.0, 3.0, 2.5],
                                    label=3,
                                    id=4,
                                    group=4,
                                    attributes={'is_crowd': False}),
                            Polygon([5.0, 3.5, 4.5, 0.0, 8.0, 0.0, 5.0, 3.5],
                                    label=3,
                                    id=4,
                                    group=4,
                                    attributes={'is_crowd': False}),
                        ],
                        attributes={'id': 1}),
                ])

            def categories(self):
                return {AnnotationType.label: label_categories}

        with TestDir() as test_dir:
            self._test_save_and_load(
                SrcExtractor(),
                CocoInstancesConverter(segmentation_mode='polygons'),
                test_dir,
                target_dataset=DstExtractor())
示例#17
0
    def test_can_merge_polygons_on_loading(self):
        label_categories = LabelCategories()
        for i in range(10):
            label_categories.add(str(i))
        categories = {AnnotationType.label: label_categories}

        class TestExtractor(Extractor):
            def __iter__(self):
                return iter([
                    DatasetItem(id=1,
                                image=np.zeros((6, 10, 3)),
                                annotations=[
                                    Polygon([0, 0, 4, 0, 4, 4],
                                            label=3,
                                            id=4,
                                            group=4),
                                    Polygon([5, 0, 9, 0, 5, 5],
                                            label=3,
                                            id=4,
                                            group=4),
                                ]),
                ])

            def categories(self):
                return categories

        class TargetExtractor(TestExtractor):
            def __iter__(self):
                items = list(super().__iter__())
                items[0]._annotations = [
                    Mask(
                        np.array(
                            [[0, 1, 1, 1, 0, 1, 1, 1, 1, 0],
                             [0, 0, 1, 1, 0, 1, 1, 1, 0, 0],
                             [0, 0, 0, 1, 0, 1, 1, 0, 0, 0],
                             [0, 0, 0, 0, 0, 1, 0, 0, 0, 0],
                             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                             [0, 0, 0, 0, 0, 0, 0, 0, 0, 0]],
                            # only internal fragment (without the border),
                            # but not everywhere...
                        ),
                        label=3,
                        id=4,
                        group=4,
                        attributes={'is_crowd': False}),
                ]
                return iter(items)

        with TestDir() as test_dir:
            self._test_save_and_load(
                TestExtractor(),
                CocoInstancesConverter(),
                test_dir,
                importer_args={'merge_instance_polygons': True},
                target_dataset=TargetExtractor())
示例#18
0
            def categories(self):
                label_categories = LabelCategories()
                points_categories = PointsCategories()
                for i in range(10):
                    label_categories.add(str(i))
                    points_categories.add(i, [])

                return {
                    AnnotationType.label: label_categories,
                    AnnotationType.points: points_categories,
                }
def get_categories():
    # output categories - label map etc.

    label_categories = LabelCategories()

    with open("samples/imagenet.class", "r") as file:
        for line in file.readlines():
            label = line.strip()
            label_categories.add(label)

    return {AnnotationType.label: label_categories}
示例#20
0
文件: ac.py 项目: Eric2370/datumaro-1
    def _init_categories(self):
        if self._adapter is None or self._adapter.label_map is None:
            return None

        label_map = sorted(self._adapter.label_map.items(), key=lambda e: e[0])

        label_cat = LabelCategories()
        for _, label in label_map:
            label_cat.add(label)

        return { AnnotationType.label: label_cat }
示例#21
0
    def _load_categories(self, labels):
        attributes = ['track_id']
        if self._is_gt:
            attributes += ['occluded', 'visibility', 'ignored']
        else:
            attributes += ['score']
        label_cat = LabelCategories(attributes=attributes)
        for label in labels:
            label_cat.add(label)

        return { AnnotationType.label: label_cat }
示例#22
0
    def _load_label_categories(self, loader):
        catIds = loader.getCatIds()
        cats = loader.loadCats(catIds)

        categories = LabelCategories()
        label_map = {}
        for idx, cat in enumerate(cats):
            label_map[cat['id']] = idx
            categories.add(name=cat['name'], parent=cat['supercategory'])

        return categories, label_map
示例#23
0
 def categories(self):
     label_cat = LabelCategories()
     label_cat.add('window')
     label_cat.add('license plate')
     label_cat.add('o1')
     label_cat.add('q1')
     label_cat.add('b1')
     label_cat.add('m1')
     label_cat.add('hg')
     return {
         AnnotationType.label: label_cat,
     }
示例#24
0
    def test_dataset(self):
        label_categories = LabelCategories()
        for i in range(5):
            label_categories.add('cat' + str(i))

        mask_categories = MaskCategories(
            generate_colormap(len(label_categories.items)))

        points_categories = PointsCategories()
        for index, _ in enumerate(label_categories.items):
            points_categories.add(index, ['cat1', 'cat2'], joints=[[0, 1]])

        return Dataset.from_iterable([
            DatasetItem(id=100, subset='train', image=np.ones((10, 6, 3)),
                annotations=[
                    Caption('hello', id=1),
                    Caption('world', id=2, group=5),
                    Label(2, id=3, attributes={
                        'x': 1,
                        'y': '2',
                    }),
                    Bbox(1, 2, 3, 4, label=4, id=4, z_order=1, attributes={
                        'score': 1.0,
                    }),
                    Bbox(5, 6, 7, 8, id=5, group=5),
                    Points([1, 2, 2, 0, 1, 1], label=0, id=5, z_order=4),
                    Mask(label=3, id=5, z_order=2, image=np.ones((2, 3))),
                ]),
            DatasetItem(id=21, subset='train',
                annotations=[
                    Caption('test'),
                    Label(2),
                    Bbox(1, 2, 3, 4, label=5, id=42, group=42)
                ]),

            DatasetItem(id=2, subset='val',
                annotations=[
                    PolyLine([1, 2, 3, 4, 5, 6, 7, 8], id=11, z_order=1),
                    Polygon([1, 2, 3, 4, 5, 6, 7, 8], id=12, z_order=4),
                ]),

            DatasetItem(id=42, subset='test',
                attributes={'a1': 5, 'a2': '42'}),

            DatasetItem(id=42),
            DatasetItem(id=43, image=Image(path='1/b/c.qq', size=(2, 4))),
        ], categories={
            AnnotationType.label: label_categories,
            AnnotationType.mask: mask_categories,
            AnnotationType.points: points_categories,
        })
示例#25
0
            def categories(self):
                label_cat = LabelCategories()
                label_cat.add('label0')
                label_cat.add('label9')
                label_cat.add('label4')

                mask_cat = MaskCategories(colormap={
                    k: v for k, v in mask_tools.generate_colormap(5).items()
                    if k in { 0, 1, 3, 4 }
                })

                return {
                    AnnotationType.label: label_cat,
                    AnnotationType.mask: mask_cat,
                }
示例#26
0
    def test_can_allow_undeclared_attrs(self):
        source_dataset = Dataset.from_iterable([
            DatasetItem(
                id=0,
                annotations=[
                    Label(0, attributes={
                        'x': 4,
                        'y': 2
                    }),
                    Bbox(1, 2, 3, 4, label=0, attributes={
                        'x': 1,
                        'y': 1
                    }),
                ]),
        ],
                                               categories=[('a', '', {'x'})])

        target_label_cat = LabelCategories(attributes={'occluded'})
        target_label_cat.add('a', attributes={'x'})
        target_dataset = Dataset.from_iterable(
            [
                DatasetItem(id=0,
                            annotations=[
                                Label(0, attributes={
                                    'x': 4,
                                    'y': 2
                                }),
                                Bbox(1,
                                     2,
                                     3,
                                     4,
                                     label=0,
                                     attributes={
                                         'x': 1,
                                         'y': 1,
                                         'occluded': False
                                     }),
                            ],
                            attributes={'frame': 0}),
            ],
            categories={AnnotationType.label: target_label_cat})

        with TestDir() as test_dir:
            self._test_save_and_load(source_dataset,
                                     partial(CvatConverter.convert,
                                             allow_undeclared_attrs=True),
                                     test_dir,
                                     target_dataset=target_dataset)
示例#27
0
        def categories(self):
            label_categories = LabelCategories()
            for i in range(5):
                label_categories.add('cat' + str(i))

            mask_categories = MaskCategories(
                generate_colormap(len(label_categories.items)))

            points_categories = PointsCategories()
            for index, _ in enumerate(label_categories.items):
                points_categories.add(index, ['cat1', 'cat2'], adjacent=[0, 1])

            return {
                AnnotationType.label: label_categories,
                AnnotationType.mask: mask_categories,
                AnnotationType.points: points_categories,
            }
示例#28
0
文件: voc.py 项目: benhoff/cvat
def _make_voc_categories():
    categories = {}

    label_categories = LabelCategories()
    for label in chain(VocLabel, VocAction, VocBodyPart):
        label_categories.add(label.name)
    categories[AnnotationType.label] = label_categories

    def label_id(class_index):
        class_label = VocLabel(class_index).name
        label_id, _ = label_categories.find(class_label)
        return label_id
    colormap = { label_id(idx): tuple(color) \
        for idx, color in VocColormap.items() }
    mask_categories = MaskCategories(colormap)
    mask_categories.inverse_colormap  # init inverse colormap
    categories[AnnotationType.mask] = mask_categories

    return categories
示例#29
0
    def _generate_classification_dataset(self,
                                         config,
                                         subset=None,
                                         empty_scores=False,
                                         out_range=False,
                                         no_attr=False,
                                         no_img=False):
        probs = self._get_probs(out_range)
        if subset is None:
            self.subset = ["train", "val", "test"]
        else:
            self.subset = subset

        iterable = []
        label_cat = LabelCategories()
        idx = 0
        for label_id, label in enumerate(config.keys()):
            num_item = config[label]
            label_cat.add(label, attributes=None)
            for _ in range(num_item):
                scores = probs[idx]
                idx += 1
                if empty_scores:
                    scores = []
                attr = {"scores": scores}
                if no_attr:
                    attr = {}
                img = Image(path=f"test/dataset/{idx}.jpg", size=(90, 90))
                if no_img:
                    img = None
                iterable.append(
                    DatasetItem(
                        idx,
                        subset=self.subset[idx % len(self.subset)],
                        annotations=[Label(
                            label_id,
                            attributes=attr,
                        )],
                        image=img,
                    ))
        categories = {AnnotationType.label: label_cat}
        dataset = Dataset.from_iterable(iterable, categories)
        return dataset
示例#30
0
文件: icdar.py 项目: anhvth/cvat
    def __init__(self, extractor, label):
        super().__init__(extractor)

        assert isinstance(label, str)
        self._categories = {}
        label_cat = self._extractor.categories().get(AnnotationType.label)
        if not label_cat:
            label_cat = LabelCategories()
        self._label = label_cat.add(label)
        self._categories[AnnotationType.label] = label_cat