示例#1
0
文件: ai.py 项目: datablood/stock
def predict_today(datatype, timesteps, data_dim=15):
    # log = logger.log
    nowdate = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
    x_predict, id_predict, name_predict = trade.get_today(seg_len=timesteps,
                                                          datatype=datatype,
                                                          split=0.1,
                                                          debug=False)
    network = policy.LSTMPolicy.create_network(timesteps=timesteps,
                                               data_dim=data_dim)
    USER_HOME = os.environ['HOME']
    out_directory_path = USER_HOME + '/dw/'
    meta_file = os.path.join(out_directory_path, 'metadata.json')
    weights_path = policy_trainer.get_best_weights(meta_file)
    network.load_weights(weights_path)

    predicts = network.predict(x_predict, batch_size=16)
    v_predicts = pd.DataFrame()
    v_predicts['code'] = id_predict
    v_predicts['name'] = name_predict
    v_predicts['predict'] = predicts
    v_predicts['datain_date'] = nowdate

    db = Db()
    v_predicts = v_predicts.to_dict('records')
    db.insertmany("""INSERT INTO predicts(code,name,predict,datain_date)
        VALUES (%(code)s,%(name)s,%(predict)s,%(datain_date)s)""", v_predicts)

    log.info('predicts finished')
示例#2
0
文件: stock.py 项目: datablood/stock
    def insert_hist_trade(self):
        self.set_data()
        db = Db()

        engine = db._get_engine()
        sql_stocklist = "select code,name from stock_code"
        codes = pd.read_sql_query(sql_stocklist, engine)
        codes = codes.to_dict('records')
        i = 1
        for row in codes:
            gta = td.get_hist_data(code=row['code'],
                                   start=self.nowdate,
                                   end=self.nowdate,
                                   ktype='D',
                                   retry_count=3,
                                   pause=0.001)

            gta['datain_date'] = self.nowtime
            gta['code'] = row['code']
            gta['name'] = row['name']
            gta['c_yearmonthday'] = gta.index

            gta = gta.to_dict('records')
            try:
                db.insertmany(
                    """INSERT INTO trade_hist(c_yearmonthday,code,name,open,high,close,low,volume,price_change,p_change,ma5,ma10,ma20,v_ma5,v_ma10,v_ma20,turnover,datain_date)
                VALUES (%(c_yearmonthday)s,%(code)s,%(name)s,%(open)s,%(high)s,%(close)s,%(low)s,%(volume)s,%(price_change)s,%(p_change)s,%(ma5)s,%(ma10)s,%(ma20)s,%(v_ma5)s,%(v_ma10)s,%(v_ma20)s,%(turnover)s,%(datain_date)s)""",
                    gta)
            except Exception, e:
                log.error('insert error:%s ', e)

            log.info('%s stock insert finished,%s,%s', i, row['code'],
                     row['name'].decode('utf-8'))
            i += 1
示例#3
0
    def insert_hist_trade(self):
        self.set_data()
        db = Db()

        engine = db._get_engine()
        sql_stocklist = "select code,name from stock_code"
        codes = pd.read_sql_query(sql_stocklist, engine)
        codes = codes.to_dict('records')
        i = 1
        for row in codes:
            gta = td.get_hist_data(code=row['code'],
                                   start=self.nowdate,
                                   end=self.nowdate,
                                   ktype='D',
                                   retry_count=3,
                                   pause=0.001)

            gta['datain_date'] = self.nowtime
            gta['code'] = row['code']
            gta['name'] = row['name']
            gta['c_yearmonthday'] = gta.index

            gta = gta.to_dict('records')
            try:
                db.insertmany(
                    """INSERT INTO trade_hist(c_yearmonthday,code,name,open,high,close,low,volume,price_change,p_change,ma5,ma10,ma20,v_ma5,v_ma10,v_ma20,turnover,datain_date)
                VALUES (%(c_yearmonthday)s,%(code)s,%(name)s,%(open)s,%(high)s,%(close)s,%(low)s,%(volume)s,%(price_change)s,%(p_change)s,%(ma5)s,%(ma10)s,%(ma20)s,%(v_ma5)s,%(v_ma10)s,%(v_ma20)s,%(turnover)s,%(datain_date)s)""",
                    gta)
            except Exception, e:
                log.error('insert error:%s ', e)

            log.info('%s stock insert finished,%s,%s', i, row['code'],
                     row['name'].decode('utf-8'))
            i += 1
示例#4
0
def conecta():
	#print(config)
	db = Db(config)
	#print(db.config);
	conn = db.connect()
	#print(db)
	return db
示例#5
0
def predict_today(datatype, timesteps, data_dim=15):
    # log = logger.log
    nowdate = time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(time.time()))
    x_predict, id_predict, name_predict = trade.get_today(seg_len=timesteps,
                                                          datatype=datatype,
                                                          split=0.1,
                                                          debug=False)
    network = policy.LSTMPolicy.create_network(timesteps=timesteps,
                                               data_dim=data_dim)
    USER_HOME = os.environ['HOME']
    out_directory_path = USER_HOME + '/dw/'
    meta_file = os.path.join(out_directory_path, 'metadata.json')
    weights_path = policy_trainer.get_best_weights(meta_file)
    network.load_weights(weights_path)

    predicts = network.predict(x_predict, batch_size=16)
    v_predicts = pd.DataFrame()
    v_predicts['code'] = id_predict
    v_predicts['name'] = name_predict
    v_predicts['predict'] = predicts
    v_predicts['datain_date'] = nowdate

    db = Db()
    v_predicts = v_predicts.to_dict('records')
    db.insertmany(
        """INSERT INTO predicts(code,name,predict,datain_date)
        VALUES (%(code)s,%(name)s,%(predict)s,%(datain_date)s)""", v_predicts)

    log.info('predicts finished')
示例#6
0
 def __init__(self, hostname, protocol, username=None, password=None):
     self.db = Db()
     self.connection = Connection()
     self.hostname = protocol + hostname
     self.username = username
     self.password = password
     self.is_logged_in = False
     self.exploit_results = {}
     self.connection.reset_session()
示例#7
0
 def setUp(self):
     init()
     self.parser = ConfigParser()
     logging.config.fileConfig('test/db_test.cfg')
     logger = logging.getLogger('basic')
     self.parser.read('test/db_test.cfg')
     connection_string = self.parser.get('Db', 'connection_string')
     self.db = Db(connection_string, logger)
     self.db.open()
示例#8
0
文件: trade.py 项目: datablood/stock
def get_hist_orgindata(debug=False):
    db = Db()
    engine = db._get_engine()
    sql_stocklist = "select  * from trade_hist where code in (select code  from trade_hist  where high<>0.0 and low <>0.0 group by code having count(code)>100)"
    if debug:
        sql_stocklist += " and code in ('002717','601888','002405')"
    df = pd.read_sql_query(sql_stocklist, engine)
    codes = df['code'].unique()
    # 增加技术指标
    df = add_volatility(df)
    df = get_technique(df)
    return df, codes
示例#9
0
文件: trade.py 项目: datablood/stock
def get_predict_acc1(debug=False):
    db = Db()
    engine = db._get_engine()
    sql_tradehist = "select code,name,p_change from trade_hist where code in (select code from predict_head where c_yearmonthday in (select max(c_yearmonthday) from predict_head) ) order by c_yearmonthday desc"
    sql_predicthead = "select code,predict from predict_head order by c_yearmonthday desc"
    if debug:
        pass
    df_trade = pd.read_sql_query(sql_tradehist, engine).head(2)
    df_predict = pd.read_sql_query(sql_predicthead, engine).head(2)
    df = pd.merge(df_trade, df_predict, on='code')
    df['acc'] = (df.p_change > 0).astype(float)
    return df
示例#10
0
def insert_predict_statics():
    db = Db()
    nowdate = time.strftime("%Y-%m-%d", time.localtime(time.time()))
    psummery,headpredict = trade.get_predict()
    psummery['c_yearmonthday'] = nowdate
    headpredict['c_yearmonthday'] = nowdate
    psummery=psummery.to_dict('records')
    headpredict=headpredict.to_dict('records')
    db.insertmany("""INSERT INTO predict_head(c_yearmonthday,code,name,predict)
        VALUES (%(c_yearmonthday)s,%(code)s,%(name)s,%(predict)s)""", headpredict)
    db.insertmany("""INSERT INTO predict_statics(c_yearmonthday,p_cnt,p_mean,p_std,p_min,p25,p50,p75,p_max)
        VALUES (%(c_yearmonthday)s,%(p_cnt)s,%(p_mean)s,%(p_std)s,%(p_min)s,%(p25)s,%(p50)s,%(p75)s,%(p_max)s)""", psummery)
示例#11
0
def get_hist_orgindata(debug=False):
    db = Db()
    engine = db._get_engine()
    sql_stocklist = "select  * from trade_hist where code in (select code  from trade_hist  where high<>0.0 and low <>0.0 group by code having count(code)>100)"
    if debug:
        sql_stocklist += " and code in ('002717','601888','002405')"
    df = pd.read_sql_query(sql_stocklist, engine)
    codes = df['code'].unique()
    # 增加技术指标
    df = add_volatility(df)
    df = get_technique(df)
    return df, codes
示例#12
0
def get_predict_acc1(debug=False):
    db = Db()
    engine = db._get_engine()
    sql_tradehist = "select code,name,p_change from trade_hist where code in (select code from predict_head where c_yearmonthday in (select max(c_yearmonthday) from predict_head) ) order by c_yearmonthday desc"
    sql_predicthead = "select code,predict from predict_head order by c_yearmonthday desc"
    if debug:
        pass
    df_trade = pd.read_sql_query(sql_tradehist, engine).head(2)
    df_predict = pd.read_sql_query(sql_predicthead, engine).head(2)
    df = pd.merge(df_trade, df_predict, on='code')
    df['acc'] = (df.p_change > 0).astype(float)
    return df
示例#13
0
文件: trade.py 项目: datablood/stock
def get_predict(debug=False):
    db = Db()
    engine = db._get_engine()
    sql_stocklist = "select * from predicts where datain_date in(select  max(datain_date) from predicts) order by predict desc"
    if debug:
        pass
    df = pd.read_sql_query(sql_stocklist, engine)

    headpredict = df.head(2)
    psummery = df.describe().T
    psummery.columns = ['p_cnt', 'p_mean', 'p_std', 'p_min', 'p25', 'p50',
                        'p75', 'p_max']
    return psummery, headpredict
示例#14
0
def get_predict(debug=False):
    db = Db()
    engine = db._get_engine()
    sql_stocklist = "select * from predicts where datain_date in(select  max(datain_date) from predicts) order by predict desc"
    if debug:
        pass
    df = pd.read_sql_query(sql_stocklist, engine)

    headpredict = df.head(2)
    psummery = df.describe().T
    psummery.columns = [
        'p_cnt', 'p_mean', 'p_std', 'p_min', 'p25', 'p50', 'p75', 'p_max'
    ]
    return psummery, headpredict
示例#15
0
def insert_predict_acc():
    db = Db()
    nowdate = time.strftime("%Y-%m-%d", time.localtime(time.time()))
    acc1 = trade.get_predict_acc1()
    acc1['c_yearmonthday'] = nowdate
    acc1=acc1.to_dict('records')
    db.insertmany("""INSERT INTO acc1(c_yearmonthday,code,name,predict,p_change,acc)
        VALUES (%(c_yearmonthday)s,%(code)s,%(name)s,%(predict)s,%(p_change)s,%(acc)s)""", acc1)

    acc2 = trade.get_predict_acc2()
    acc2['c_yearmonthday'] = nowdate
    acc2=acc2.to_dict('records')
    db.insertmany("""INSERT INTO acc2(c_yearmonthday,p_acc,p_change,h_p_acc,h_p_change)
        VALUES (%(c_yearmonthday)s,%(p_acc)s,%(p_change)s,%(h_p_acc)s,%(h_p_change)s)""", acc2)
示例#16
0
    def insert_today_trade(self):
        self.set_data()
        db = Db()

        gta = td.get_today_all()
        gta['datain_date'] = self.nowtime
        gta['c_yearmonthday'] = self.nowdate

        gta = gta.to_dict('records')

        db.insertmany(
            """INSERT INTO trade_record(c_yearmonthday,code,name,changepercent,trade,open,high,low,settlement
        ,volume,turnoverratio,amount,per,pb,mktcap,nmc,datain_date)
        VALUES (%(c_yearmonthday)s,%(code)s,%(name)s,%(changepercent)s,%(trade)s,%(open)s,%(high)s,%(low)s,%(settlement)s,%(volume)s,%(turnoverratio)s,%(amount)s,%(per)s,%(pb)s,%(mktcap)s,%(nmc)s,%(datain_date)s)""",
            gta)
示例#17
0
文件: conftest.py 项目: bcgov/OCWA
def mockdb(mocker):
    """A test mock database."""
    mock_init_conn = mocker.patch('db.db.Db.initConnection')
    mock_init_conn.side_effect = mock_db

    db = Db()

    # Tried scoping to module - but mocker is function, so not able.  Is there a bulk delete?
    for r in db.Results.objects():
        r.delete()
    db.Results(file_id="file_1", rule_id="rule_1", state=1, message="").save()
    db.Results(file_id="file_2", rule_id="rule_1", state=1, message="").save()
    db.Results(file_id="file_2", rule_id="rule_2", state=1, message="").save()

    return db
示例#18
0
文件: stock.py 项目: datablood/stock
    def insert_today_trade(self):
        self.set_data()
        db = Db()

        gta = td.get_today_all()
        gta['datain_date'] = self.nowtime
        gta['c_yearmonthday'] = self.nowdate

        gta = gta.to_dict('records')

        db.insertmany(
            """INSERT INTO trade_record(c_yearmonthday,code,name,changepercent,trade,open,high,low,settlement
        ,volume,turnoverratio,amount,per,pb,mktcap,nmc,datain_date)
        VALUES (%(c_yearmonthday)s,%(code)s,%(name)s,%(changepercent)s,%(trade)s,%(open)s,%(high)s,%(low)s,%(settlement)s,%(volume)s,%(turnoverratio)s,%(amount)s,%(per)s,%(pb)s,%(mktcap)s,%(nmc)s,%(datain_date)s)""",
            gta)
示例#19
0
def validate(rule, result):
    logid = "Validate [" + str(os.getpid()) + "] "
    log.debug(logid + " multi name = " + current_process().name)

    db = Db(True, 15)

    resultObj = db.Results.objects(file_id=result.file_id,
                                   rule_id=result.rule_id)[0]
    log.debug(logid + "Result =  " + str(resultObj))

    notifier = Notifications()
    source = ""
    if 'Source' in rule:
        source = rule['Source']
    else:
        source = rule['source']

    result, message = read_file_and_evaluate(source, resultObj)
    log.debug("Running validation process for " + rule['name'] +
              " got result " + str(result) + " and message " + message)
    if result:
        resultObj.state = 0
    else:
        resultObj.state = 1
        if resultObj.mandatory:
            resultObj.message = "Failed"
        else:
            resultObj.message = "Warning"

    resultObj.save()

    notifier.publish('fileStatus', resultObj.to_json())
 def registrar_saida_in(self, hora: str = None) -> bool:
     try:
         where = {"data": self.data, "colaborador_id": self.colaborador_id}
         self.registros_ES[-1].update({"saida": hora if hora else pendulum.now().format(hour_format)})
         return True if Db.update("ponto", where, self) else False
     except:
         raise Exception
示例#21
0
def checker():
    print("checker started")
    db = Db(cfg)
    while True:
        time.sleep(cfg.SLEEP_TIME)
        ipPort = db.select_proxy()
        if ipPort:
            proxyDict = {
                "http": ipPort,
                "https": ipPort,
            }
            r = requests.get(cfg.LINK_TO_BE_CHECKED, headers={'User-Agent': random.choice(cfg.USER_AGENT)}, proxies=proxyDict)
            if not 200 <= r.status_code <= 299:
                db.delete_row(ipPort)
                logger.info("{} deleted".format(ipPort))
            else:
                logger.error("{} : {}".format(r.status_code, r.text))
示例#22
0
 def process_item(self, item, spider):
     db = Db()
     if item['table_name'] == 'movie':
         if item['summary']:
             db.movie_update(item)
         else:
             db.movie_insert(item)
     else:
         db.comment_insert(item)
     return item
示例#23
0
def get_predict_acc2(debug=False):
    db = Db()
    engine = db._get_engine()
    sql_stocklist = "select  * from acc1"
    if debug:
        pass
    df = pd.read_sql_query(sql_stocklist, engine)
    acc2 = df.sort_values('c_yearmonthday', ascending=0)
    acc2 = acc2.head(2)
    acc2 = acc2.groupby('c_yearmonthday').sum()

    acc2_final = pd.DataFrame()
    acc2_final['h_p_acc'] = [df['acc'].sum() / float(df['acc'].count())]
    acc2_final['h_p_change'] = [df['p_change'].sum() / 2.0]
    acc2_final['p_acc'] = [acc2['acc'].sum() / 2.0]
    acc2_final['p_change'] = [acc2['p_change'].sum() / 2.0]

    return acc2_final
示例#24
0
 def __init__(self, hostname, protocol, username=None, password=None):
     self.db = Db()
     self.connection = Connection()
     self.hostname = protocol + hostname
     self.username = username
     self.password = password
     self.is_logged_in = False
     self.exploit_results = {}
     self.connection.reset_session()
示例#25
0
文件: trade.py 项目: datablood/stock
def get_predict_acc2(debug=False):
    db = Db()
    engine = db._get_engine()
    sql_stocklist = "select  * from acc1"
    if debug:
        pass
    df = pd.read_sql_query(sql_stocklist, engine)
    acc2 = df.sort_values('c_yearmonthday', ascending=0)
    acc2 = acc2.head(2)
    acc2 = acc2.groupby('c_yearmonthday').sum()

    acc2_final = pd.DataFrame()
    acc2_final['h_p_acc'] = [df['acc'].sum() / float(df['acc'].count())]
    acc2_final['h_p_change'] = [df['p_change'].sum() / 2.0]
    acc2_final['p_acc'] = [acc2['acc'].sum() / 2.0]
    acc2_final['p_change'] = [acc2['p_change'].sum() / 2.0]

    return acc2_final
示例#26
0
def start(token, backend, db, dialog, filename):
    bot = init_backend(token, backend)
    path = db['path']
    del db['path']
    db_path = init_db(path, **db)
    db = Db(db_path)
    dialog = Dialog(db, dialog)

    print('Start')

    while True:
        messages = bot.get_unread_messages()
        if messages["count"] >= 1:
            id, message_id, body, url = bot.get_message_ids_image(messages)
            print('Запрос:', id, body)
            try:

                if url and url[-3:] == 'jpg':
                    urllib.request.urlretrieve(url, filename)
                    db.save_image(id, body, filename)
                    bot.send_message(id, dialog.ok)
                    continue

                if body.lower() in dialog.common_answer:
                    bot.send_message(id, dialog.common_answer[body.lower()])
                    continue

                for key in dialog.action:
                    if key in body.lower():

                        part = body.lower().split(':')[1].strip()
                        if '&' in body.lower():
                            splitted = part.split('&')
                            part_1, part_2 = splitted[0].strip(
                            ), splitted[1].strip()
                            db.hset(id, part_1, part_2)
                            bot.send_message(id, dialog.ok)
                            break

                        data = db.hget(id, part)

                        if data and len(data) > 15000:
                            with open(filename, 'wb') as file:
                                file.write(data)
                            bot.upload_image(id, filename)
                            break
                        elif data:
                            bot.send_message(id, data)
                        else:
                            bot.send_message(id, dialog.text_does_not_exist)
                        break
                else:
                    bot.send_message(id, dialog.don_t_understand)
            except Exception as e:
                print(str(e))
                bot.send_message(id, dialog.error)

        time.sleep(1)
示例#27
0
def new_proxy():
    print("new_proxy started")

    db = Db(cfg)
    while True:
        time.sleep(cfg.SLEEP_TIME)
        if db.tot_rows() <= cfg.MAX_IP:
            try:
                proxyjson = requests.get('http://gimmeproxy.com/api/getProxy?maxCheckPeriod=300?protocol=http').json()
                print(proxyjson)
            except requests.exceptions.RequestException as e:
                logger.error(e)
            except ValueError as e:  # includes simplejson.decoder.JSONDecodeError
                logger.error(e)
            if 'ipPort' in proxyjson.keys():
                db.insert_row(proxyjson['ipPort'])
                logger.info("proxy added: {}".format(proxyjson['ipPort']))
            else:
                logger.error(proxyjson)
示例#28
0
def test():
    infile = 'data.csv'
    df = pd.read_csv(infile)
    df = df.groupby('X')
    db = Db(TEMP_DB)
    with open('script.sql', 'w') as file:
        for d in df:
            (table_name, data) = d
            t = Table(db, table_name, data, file, test_mode=True)
            t.prepare_temp_table()
 def criar_registro_ES(self, hour_in: str = None, hour_out: str = "") -> Dict[str, str]:
     try:
         self.data = pendulum.now().format(date_format)
         self.registros_ES = []
         self.registros_ES = [
             {"_id": str(uuid1()), "entrada": hour_in if hour_in else pendulum.now().format(hour_format),
              "saida": hour_out if hour_out else ""}]
         ret = Db.save('ponto', self)
         return ret if ret else None
     except:
         raise Exception
    def find(cls, colaborador_id: str = None, cpf: str = None) -> List[Dict[str, str]]:
        try:
            where = {}
            where.update({"_id": f"{colaborador_id.replace(' ', '')}"} if colaborador_id else {})
            where.update({"cpf": f"{cpf.replace(' ', '')}"} if cpf else {})

            colaboradores = Db.find("colaborador", where)

            return colaboradores if colaboradores else None
        except:
            # TODO EXCEPT
            raise Exception
示例#31
0
文件: conftest.py 项目: NovaVic/OCWA
def mockdb(mocker):
    """A test mock database."""
    mock_init_conn = mocker.patch('db.db.Db.initConnection')
    mock_init_conn.side_effect = mock_db

    db = Db()
    # Tried scoping to module - but mocker is function, so not able.  Is there a bulk delete?
    for r in Results.objects():
        r.delete()
    Rules(name="rule1", source="${file.name}!=badFile", mandatory=False).save()
    Rules(name="rule2", source="${file.size}<500", state=1,
          mandatory=True).save()

    return db
示例#32
0
def start(token, backend, db, filename):
    bot = init_backend(token, backend)
    path = db['path']
    del db['path']
    db_path = init_db(path, **db)
    db = Db(db_path)

    print('Start')

    while True:

        try:
            messages = bot.get_unread_messages()
            if messages["count"] >= 1:
                id, body = bot.get_message_and_id(messages)
                bot.convert_text_to_voice(body)
                uploaded_voice = bot.upload_file(filename, id)
                bot.send_message(id, attach=uploaded_voice)
                db.rpush(id, body)
                print('Запрос:', id, body)

            time.sleep(1)
        except Exception as e:
            print('Error:', str(e))
    def find(cls, ponto_id: str = None, colaborador_id: str = None, data: str = None, mes: str = None) -> List[
        Dict[str, str]]:
        try:
            where = {}
            where.update({"_id": f"{ponto_id.replace(' ', '')}"} if ponto_id else {})
            where.update({"data": f"{data.replace(' ', '')}"} if data else {})
            where.update({"colaborador_id": f"{colaborador_id.replace(' ', '')}"} if colaborador_id else {})

            if mes:
                regex = re.compile(f"\\d\\d\\/{mes.replace(' ', '')}\\/\\d\\d\\d\\d")
                where.update({"data": regex})

            pontos = Db.find("ponto", where, sort_by="data")

            return pontos if pontos else None
        except:
            raise Exception
    def registrar_entrada_in(self, hour: str = None) -> bool:
        try:
            if not self.data:
                return True if self.criar_registro_ES() else False

            dif_dias = pendulum.period(pendulum.from_format(self.data, date_format), pendulum.now()).in_days()
            if dif_dias > 0 and self.registros_ES[-1]["saida"] != "":
                return True if self.criar_registro_ES() else False

            where = {"colaborador_id": self.colaborador_id, "data": self.data}
            self.registros_ES.append(
                {"_id": str(uuid1()), "entrada": pendulum.now().format(hour_format) if not hour else hour
                    , "saida": ""})
            return True if Db.update("ponto", where, self) else False
        except:
            # TODO EXCEPT
            raise Exception
示例#35
0
文件: conftest.py 项目: bcgov/OCWA
def mockdb(mocker):
    """A test mock database."""
    mock_init_conn = mocker.patch('db.db.Db.initConnection')
    mock_init_conn.side_effect = mock_db

    db = Db()
    # Tried scoping to module - but mocker is function, so not able.  Is there a bulk delete?
    for r in db.Rules.objects():
        r.delete()
    for p in db.Policies.objects():
        p.delete()
    Rules(name="rule1",source="${file.name}!=badFile",mandatory=False).save()
    Rules(name="rule2",source="${file.size}<500",mandatory=True).save()

    Policies(name="export-data",rules=['rule1','rule2']).save()
    Policies(name="bad-policy",rules=['rule1','rule2','rule3']).save()

    return db
示例#36
0
def insert_predict_statics():
    db = Db()
    nowdate = time.strftime("%Y-%m-%d", time.localtime(time.time()))
    psummery, headpredict = trade.get_predict()
    psummery['c_yearmonthday'] = nowdate
    headpredict['c_yearmonthday'] = nowdate
    psummery = psummery.to_dict('records')
    headpredict = headpredict.to_dict('records')
    db.insertmany(
        """INSERT INTO predict_head(c_yearmonthday,code,name,predict)
        VALUES (%(c_yearmonthday)s,%(code)s,%(name)s,%(predict)s)""",
        headpredict)
    db.insertmany(
        """INSERT INTO predict_statics(c_yearmonthday,p_cnt,p_mean,p_std,p_min,p25,p50,p75,p_max)
        VALUES (%(c_yearmonthday)s,%(p_cnt)s,%(p_mean)s,%(p_std)s,%(p_min)s,%(p25)s,%(p50)s,%(p75)s,%(p_max)s)""",
        psummery)
示例#37
0
def insert_predict_acc():
    db = Db()
    nowdate = time.strftime("%Y-%m-%d", time.localtime(time.time()))
    acc1 = trade.get_predict_acc1()
    acc1['c_yearmonthday'] = nowdate
    acc1 = acc1.to_dict('records')
    db.insertmany(
        """INSERT INTO acc1(c_yearmonthday,code,name,predict,p_change,acc)
        VALUES (%(c_yearmonthday)s,%(code)s,%(name)s,%(predict)s,%(p_change)s,%(acc)s)""",
        acc1)

    acc2 = trade.get_predict_acc2()
    acc2['c_yearmonthday'] = nowdate
    acc2 = acc2.to_dict('records')
    db.insertmany(
        """INSERT INTO acc2(c_yearmonthday,p_acc,p_change,h_p_acc,h_p_change)
        VALUES (%(c_yearmonthday)s,%(p_acc)s,%(p_change)s,%(h_p_acc)s,%(h_p_change)s)""",
        acc2)
示例#38
0
def run():
    infile = 'data.csv'
    result_file = 'results.csv'
    alter_table_file = 'alter_tables.sql'

    df = pd.read_csv(infile)
    df = df.groupby('X')
    db = Db(TEMP_DB)
    total_errors = float(0)
    alter_statements = []

    with open('script.sql', 'w') as file:
        with open(result_file, 'w') as results:
            with open(alter_table_file, 'w') as alter_file:
                for d in df:
                    (table_name, data) = d
                    t = Table(db, table_name, data, sql_log=file, results_log=results, test_mode=False)
                    t.prepare_temp_table()
                    errors = t.test_temp_table()
                    if errors == 0:
                        statement = t.get_alter_table_for_original_table()
                        alter_statements.append(statement)
                        alter_file.write(statement)
                    total_errors += float(errors)
    if total_errors == 0:
        print(f'All tests passed: alter table file generated in {alter_table_file}')
        do_it = input(f"Do you want to apply the changes to the original database ({ORIGINAL_DB}) [yN]:")
        if do_it.lower() == 'y':
            print('Applying modifications to the original database')
            db = Db(ORIGINAL_DB)
            for statement in alter_statements:
                db.execute(statement)
            print('All done')
    else:
        print(f'Not all tests passed')
        sys.exit(1)
 def remover(self) -> bool:
     try:
         return True if Db.delete("colaborador", self) else None
     except:
         # TODO EXCEPT
         return False
示例#40
0
class Exploit(object):
    def __init__(self, hostname, protocol, username=None, password=None):
        self.db = Db()
        self.connection = Connection()
        self.hostname = protocol + hostname
        self.username = username
        self.password = password
        self.is_logged_in = False
        self.exploit_results = {}
        self.connection.reset_session()

    def exploit(self, short_name=None):
        if self.connection.verify_socket(self.hostname) is False:
            results = {"error": "Could not connect to host."}
        elif self.username and self.password is not None and not self.login(self.hostname, self.username,
                                                                            self.password):
            results = {"error": "Unable to login with the credentials provided."}
        else:
            if short_name is not None:
                for exploit in self.db.get_exploits_by_exploit_type_short_name(short_name):
                    self.run_exploit(exploit)
            else:
                for exploit_type in self.db.get_exploit_types():
                    for exploit in self.db.get_exploits_by_exploit_type_id(exploit_type.id):
                        self.run_exploit(exploit)
            results = self.get_exploit_results()

        return results

    def run_exploit(self, exploit: DBExploit):
        if exploit.is_authenticated and not self.is_logged_in:
            pass
        else:
            self.validate_response(
                exploit, self.do_request(exploit, exploit.exploit_body if exploit.exploit_body is not None else '')
            )

    def validate_response(self, exploit: DBExploit, response):
        if self.get_validator_by_id(exploit.validator_id).validate(response):
            self.exploit_found(exploit)

    def do_request(self, exploit: DBExploit, data):
        url = self.hostname + exploit.exploit_url
        if self.connection.verify_url(url) is False:
            return None

        return self.connection.request(hostname=url, data=data,
                                       headers=eval(
                                           exploit.exploit_headers) if exploit.exploit_headers is not None else {},
                                       method=exploit.request_method,
                                       urlencode=exploit.is_url_encode)

    def exploit_found(self, exploit: DBExploit):
        self.exploit_results.update({
            exploit.id: {
                "name": exploit.name,
                "version": exploit.version,
                "exploiturl": exploit.exploit_url
            }
        })

    def login(self, hostname, username, password):
        self.is_logged_in = self.connection.login(hostname, username, password)

        return self.is_logged_in

    def get_exploit_results(self):
        exploits = self.exploit_results.copy()
        self.exploit_results.clear()

        return exploits

    @staticmethod
    def check_file(file):
        if not os.path.isfile(file) and not os.access(file, os.R_OK):
            print('[X] ' + file + ' file is missing or not readable')
            sys.exit(1)
        else:
            return file

    @staticmethod
    def get_validator_by_id(validator_id):
        attribute = '__validator_id__'
        for name, obj in inspect.getmembers(sys.modules[__name__]):
            if hasattr(obj, attribute) and getattr(obj, attribute) == validator_id:
                return obj()
        raise ValueError('Could not find Validator with validator id %d' % validator_id)
示例#41
0
文件: trade.py 项目: datablood/stock
def get_hist6years(split=0.2,
                   seg_len=3,
                   debug=False,
                   datatype='cnn',
                   datafile=None,
                   predict_days=18):
    log = logger.log
    db = Db()
    engine = db._get_engine()
    sql_stocklist = "select  * from trade_hist where code in (select code  from trade_hist  where high<>0.0 and low <>0.0 group by code having count(code)>100)"
    if debug:
        sql_stocklist += " and code in ('002717','601888','002405')"
    df = pd.read_sql_query(sql_stocklist, engine)
    # 增加技术指标
    df = add_volatility(df)
    stockcodes = df['code'].unique()
    df = get_technique(df, stockcodes)

    X_train = []
    X_valid = []
    Y_train = []
    Y_valid = []
    ID_train = []
    ID_valid = []
    log.info('begin generate train data and validate data.')
    begin_time = time.clock()
    k = 0
    predict_days = predict_days
    for codes in stockcodes:
        temp_df = df[df.code == codes]
        temp_df1 = temp_df.copy(deep=True)
        temp_df1 = temp_df1.sort_values(by='c_yearmonthday', ascending=1)

        tradedaylist = temp_df1['c_yearmonthday'].values
        tradedaylist.sort()
        tradedaylist = tradedaylist[::-1]

        temp_df1 = temp_df1.set_index('c_yearmonthday')
        if len(tradedaylist) < seg_len:
            log.info('not enough trade days ,code is :%s', codes)
            continue

        validdays = np.round(split * len(tradedaylist))
        # validdays = 2

        i = 0
        for day in tradedaylist:
            i += 1
            segdays = tradedaylist[i + predict_days:i + predict_days + seg_len]
            segbegin = segdays[len(segdays) - 1]
            segend = segdays[0]
            if len(segdays) < seg_len:
                break
            data = []
            # for segday in segdays:
            data = temp_df1.loc[segbegin:segend, [
                'open', 'high', 'close', 'low', 'volume', 'price_change',
                'p_change', 'ma5', 'ma10', 'ma20', 'v_ma5', 'v_ma10', 'v_ma20',
                'turnover', 'deltat', 'BIAS_B', 'BIAS_S', 'BOLL_B', 'BOLL_S',
                'CCI_B', 'CCI_S', 'DMI_B', 'DMI_HL', 'DMI_IF1', 'DMI_IF2',
                'DMI_MAX1', 'DMI_S', 'KDJ_B', 'KDJ_S', 'KD_B', 'KD_S', 'MACD',
                'MACD_B', 'MACD_DEA', 'MACD_DIFF', 'MACD_EMA_12',
                'MACD_EMA_26', 'MACD_EMA_9', 'MACD_S', 'MA_B', 'MA_S', 'PSY_B',
                'PSY_MYPSY1', 'PSY_S', 'ROC_B', 'ROC_S', 'RSI_B', 'RSI_S',
                'VR_B', 'VR_IF1', 'VR_IF2', 'VR_IF3', 'VR_S', 'XYYH_B',
                'XYYH_B1', 'XYYH_B2', 'XYYH_B3', 'XYYH_CC', 'XYYH_DD'
            ]]
            data = data.values
            if datatype == 'cnn':
                data = [data]
            d1 = tradedaylist[i - 1]
            d3 = tradedaylist[i + predict_days - 1]
            data_tag = temp_df[temp_df.c_yearmonthday == d1][
                ['code', 'name', 'p_change', 'close']]
            data_tag3 = temp_df[temp_df.c_yearmonthday == d3][
                ['code', 'name', 'p_change', 'close']]
            temp_y = data_tag['close'].values[0]
            temp_y3 = data_tag3['close'].values[0]
            temp_y = (temp_y - temp_y3) / temp_y3
            temp_y = to_cate01(temp_y)
            temp_id = data_tag['code'].values[0]
            if (i > 0 and i <= validdays):
                X_valid.append(data)
                ID_valid.append(temp_id)
                Y_valid.append(temp_y)
            else:
                X_train.append(data)
                ID_train.append(temp_id)
                Y_train.append(temp_y)
        k += 1
        samples = 12
        if k % samples == 0:
            print k
            log.info('%s stock finished ', k)
            yield ((np.asarray(X_train), np.asarray(Y_train),
                    np.asarray(ID_train)),
                   (np.asarray(X_valid), np.asarray(Y_valid),
                    np.asarray(ID_valid)))
            X_train = []
            X_valid = []
            Y_train = []
            Y_valid = []
            ID_train = []
            ID_valid = []

    yield ((np.asarray(X_train), np.asarray(Y_train), np.asarray(ID_train)),
           (np.asarray(X_valid), np.asarray(Y_valid), np.asarray(ID_valid)))
示例#42
0
文件: trade.py 项目: datablood/stock
def get_today(split=0.2,
              seg_len=3,
              debug=False,
              datatype='cnn',
              datafile=None):
    log = logger.log
    db = Db()
    engine = db._get_engine()
    sql_stocklist = "select  * from trade_hist where code in (select code  from trade_hist  where high<>0.0 and low <>0.0 group by code having count(code)>100)"
    if debug:
        sql_stocklist += " and code in ('002717','601888','002405')"
    df = pd.read_sql_query(sql_stocklist, engine)
    df = add_volatility(df)
    stockcodes = df['code'].unique()
    df = get_technique(df)
    print stockcodes

    X_predict = []
    ID_predict = []
    NAME_predict = []
    log.info('begin generate train data and validate data.')
    k = 0
    for codes in stockcodes:
        temp_df = df[df.code == codes]
        temp_df1 = temp_df.copy(deep=True)
        temp_df1 = temp_df1.sort_values(by='c_yearmonthday', ascending=1)

        tradedaylist = temp_df1['c_yearmonthday'].values
        tradedaylist.sort()
        tradedaylist = tradedaylist[::-1]

        temp_df1 = temp_df1.set_index('c_yearmonthday')
        if len(tradedaylist) < seg_len:
            log.info('not enough trade days ,code is :%s', codes)
            continue

        i = 0
        segdays = tradedaylist[i:i + seg_len]
        segbegin = segdays[len(segdays) - 1]
        segend = segdays[0]
        if len(segdays) < seg_len:
            break
        data = []
        data = temp_df1.loc[segbegin:segend, [
            'open', 'high', 'close', 'low', 'volume', 'price_change',
            'p_change', 'ma5', 'ma10', 'ma20', 'v_ma5', 'v_ma10', 'v_ma20',
            'turnover', 'deltat', 'BIAS_B', 'BIAS_S', 'BOLL_B', 'BOLL_S',
            'CCI_B', 'CCI_S', 'DMI_B', 'DMI_HL', 'DMI_IF1', 'DMI_IF2',
            'DMI_MAX1', 'DMI_S', 'KDJ_B', 'KDJ_S', 'KD_B', 'KD_S', 'MACD',
            'MACD_B', 'MACD_DEA', 'MACD_DIFF', 'MACD_EMA_12', 'MACD_EMA_26',
            'MACD_EMA_9', 'MACD_S', 'MA_B', 'MA_S', 'PSY_B', 'PSY_MYPSY1',
            'PSY_S', 'ROC_B', 'ROC_S', 'RSI_B', 'RSI_S', 'VR_B', 'VR_IF1',
            'VR_IF2', 'VR_IF3', 'VR_S', 'XYYH_B', 'XYYH_B1', 'XYYH_B2',
            'XYYH_B3', 'XYYH_CC', 'XYYH_DD'
        ]]
        data = data.values
        if datatype == 'cnn':
            data = [data]
        data_tag = temp_df[temp_df.c_yearmonthday == tradedaylist[0]][
            ['code', 'name', 'p_change']]
        temp_id = data_tag['code'].values[0]
        temp_name = data_tag['name'].values[0]
        X_predict.append(data)
        ID_predict.append(temp_id)
        NAME_predict.append(temp_name)
        k += 1
        log.info('%s stock finished ', k)
    return (np.asarray(X_predict), np.asarray(ID_predict),
            np.asarray(NAME_predict))
 def save(self) -> Dict:
     try:
         return self.dict() if Db.save("colaborador", self) else {}
     except:
         # TODO EXCEPT
         raise Exception
示例#44
0
文件: trade.py 项目: datablood/stock
def get_histdata(split=0.15, seg_len=3, debug=False, datatype='cnn'):
    db = Db()
    engine = db._get_engine()
    sql_stocklist = "select  * from trade_record where code in (select code  from trade_record  where high<>0.0 and low <>0.0 group by code having count(code)=(select count(distinct c_yearmonthday) from trade_record))"
    if debug:
        sql_stocklist += " and code in ('300138','002372')"
    df = pd.read_sql_query(sql_stocklist, engine)
    stockcodes = df['code'].unique()

    X_train = []
    X_valid = []
    Y_train = []
    Y_valid = []
    ID_train = []
    ID_valid = []
    log.info('begin generate train data and validate data.')
    begin_time = time.clock()
    k = 0
    for codes in stockcodes:
        temp_df = df[df.code == codes]

        tradedaylist = temp_df.copy(deep=True)['c_yearmonthday'].values
        tradedaylist.sort()
        tradedaylist = tradedaylist[::-1]
        if len(tradedaylist) < seg_len:
            log.info('not enough trade days ,code is :%s', codes)
            continue

        validdays = np.round(split * len(tradedaylist))

        i = 0
        for day in tradedaylist:
            i += 1
            segdays = tradedaylist[i:i + seg_len]
            if len(segdays) < seg_len:
                break
            SEG_X = []
            data = []
            for segday in segdays:
                data = temp_df[temp_df.c_yearmonthday == segday][
                    ['changepercent', 'trade', 'open', 'high', 'low',
                     'settlement', 'volume', 'turnoverratio', 'amount', 'per',
                     'pb', 'mktcap', 'nmc', 'deltat']]
                data = data.values
                SEG_X.append(data[0])
            # SEG_X=np.array(SEG_X).T
            if datatype == 'cnn':
                SEG_X = [SEG_X]
            data_tag = temp_df[temp_df.c_yearmonthday == day][
                ['code', 'name', 'changepercent']]
            temp_y = data_tag['changepercent'].values[0]
            temp_y = to_cate01(temp_y)
            temp_id = data_tag['code'].values[0]
            if (i > 0 and i <= validdays):
                X_valid.append(SEG_X)
                ID_valid.append(temp_id)
                Y_valid.append(temp_y)
            else:
                X_train.append(SEG_X)
                ID_train.append(temp_id)
                Y_train.append(temp_y)
        k += 1
        if k % 500 == 0:
            log.info('%s stock finished ', k)

    log.info('generate data finished ,cost time:%s', time.clock() - begin_time)
    log.info('X_train shape is :%s', np.asarray(X_train).shape)
    log.info('Y_train shape is :%s', np.asarray(Y_train).shape)
    log.info('X_valid shape is :%s', np.asarray(X_valid).shape)
    log.info('Y_valid shape is :%s', np.asarray(Y_valid).shape)

    # X_train=normalize(X_train)
    # X_valid=normalize(X_valid)

    if debug:
        print(np.asarray(X_train), np.asarray(Y_train),
              np.asarray(ID_train)), (np.asarray(X_valid), np.asarray(Y_valid),
                                      np.asarray(ID_valid))
        print(np.asarray(X_train[0][0][0]))
    pickle.dump(
        ((np.asarray(X_train), np.asarray(Y_train), np.asarray(ID_train)),
         (np.asarray(X_valid), np.asarray(Y_valid), np.asarray(ID_valid))),
        open(datatype + '_seg' + str(seg_len) + '.pkl', 'wb'))
示例#45
0
    def run(self):
        session = Db.get_session()

        for f in session.query(File.path):
            self.queue.put((10, PathUpdate(f.path, False)))