batch_size=32, dropout=1) if select_case == 3: classifier = supervised_sAE( out_func='softmax', en_func='affine', # encoder:[sigmoid] | [affine] use_for='classification', loss_func= 'mse', # decoder:[sigmoid] with ‘cross_entropy’ | [affine] with ‘mse’ ae_type='ae', # ae | dae | sae noise_type='gs', # Gaussian noise (gs) | Masking noise (mn) beta=0.6, # 惩罚因子权重(KL项 | 非噪声样本项) p=0.01, # DAE:样本该维作为噪声的概率 / SAE稀疏性参数:期望的隐层平均活跃度(在训练批次上取平均) sup_ae_struct=[x_dim, 200, 50, y_dim], sup_ae_epochs=100, ae_epochs=30, batch_size=32, ae_lr=1e-3, dropout=1) Initializer.sess_init_all(sess) # 初始化变量 summ = Summaries(os.path.basename(__file__), sess=sess) classifier.train_model(X_train, Y_train, sess, summ) # Test print("[Test data...]") Y_pred = classifier.test_model(X_test, Y_test, sess) summ.train_writer.close() sess.close()
dbn_struct=[dim, 100, 100, fault], rbm_v_type='bin', rbm_epochs=10, batch_size=32, cd_k=10, rbm_lr=1e-3, dropout=0.95) if select_case == 2: classifier = CNN(output_act_func='softmax', hidden_act_func='relu', loss_fuc='cross_entropy', use_for='classification', cnn_lr=1e-3, cnn_epochs=100, img_shape=[dynamic, 52], channels=[1, 6, 6, 64, fault], fsize=[[4, 4], [3, 3]], ksize=[[2, 2], [2, 2]], batch_size=32, dropout=0.9) classifier.build_model() classifier.train_model(X_train, Y_train, sess) # Test Y_pred = list() print("[Test data...]") for i in range(fault): print(">>>Test fault {}:".format(i)) Y_pred.append(classifier.test_model(X_test[i], Y_test[i], sess))