def setup_model(self): """ Function to setup model. """ class DriftCoherence(ddm.models.Drift): name = "Drift depends linearly on coherence" # Parameter that should be included in the ddm required_parameters = ["driftcoherence"] # Task Parameter, i.e. coherence required_conditions = ["coherence"] # Define the get_drift function def get_drift(self, conditions, **kwargs): return self.driftcoherence * conditions['coherence'] # Set up Model with Drift depending on Coherence model = Model( name='Noise Model - Drift varies with coherence', drift=DriftCoherence(driftcoherence=Fittable(minval=0, maxval=20)), noise=NoiseConstant(noise=1), bound=BoundConstant(B=Fittable(minval=.1, maxval=1.5)), overlay=OverlayChain(overlays=[ OverlayNonDecision(nondectime=Fittable(minval=0, maxval=.4)), OverlayPoissonMixture(pmixturecoef=.02, rate=1) ]), dx=.01, dt=.01, T_dur=2) return model
def make_model(sample, model_settings): # model components: z = make_z(sample=sample, z_depends_on=model_settings['depends_on']['z']) drift = make_drift(sample=sample, drift_bias=model_settings['drift_bias'], v_depends_on=model_settings['depends_on']['v'], b_depends_on=model_settings['depends_on']['b']) a = make_a(sample=sample, urgency=model_settings['urgency'], a_depends_on=model_settings['depends_on']['a'], u_depends_on=model_settings['depends_on']['u']) t = make_t(sample=sample, t_depends_on=model_settings['depends_on']['t']) T_dur = model_settings['T_dur'] # limits: ranges = { 'z':(0.05,0.95), # starting point 'v':(0,5), # drift rate 'b':(-5,5), # drift bias 'a':(0.1,5), # bound # 'u':(-T_dur*10,T_dur*10), # hyperbolic collapse 'u':(0.01,T_dur*10), # hyperbolic collapse 't':(0,2), # non-decision time } # put together: if model_settings['start_bias']: initial_condition = z(**{param:Fittable(minval=ranges[param[0]][0], maxval=ranges[param[0]][1]) for param in z.required_parameters}) else: initial_condition = z(**{'z':0.5}) model = Model(name='stimulus coding model / collapsing bound', IC=initial_condition, drift=drift(**{param:Fittable(minval=ranges[param[0]][0], maxval=ranges[param[0]][1]) for param in drift.required_parameters}), bound=a(**{param:Fittable(minval=ranges[param[0]][0], maxval=ranges[param[0]][1]) for param in a.required_parameters}), overlay=OverlayChain(overlays=[t(**{param:Fittable(minval=ranges[param[0]][0], maxval=ranges[param[0]][1]) for param in t.required_parameters}), OverlayUniformMixture(umixturecoef=0)]), # OverlayPoissonMixture(pmixturecoef=.01, rate=1)]), noise=NoiseConstant(noise=1), dx=.005, dt=.01, T_dur=T_dur) return model
def DDM_FIT(RT, ANSWER): df = [] # RT is scalles to seconds, the function takes seconds df = pd.DataFrame({'RT': RT / 1000, 'correct': ANSWER}) df.head() sample = Sample.from_pandas_dataframe(df, rt_column_name="RT", correct_column_name="correct") model = Model( name='Model', drift=DriftConstant(drift=Fittable(minval=6, maxval=25)), noise=NoiseConstant( noise=1.5), #(noise=Fittable(minval=0.5, maxval=2.5)), bound=BoundConstant(B=2.5), overlay=OverlayChain(overlays=[ OverlayNonDecision(nondectime=Fittable(minval=0, maxval=.8)), OverlayPoissonMixture(pmixturecoef=.02, rate=1) ]), dx=.001, dt=.01, T_dur=2) # Fitting this will also be fast because PyDDM can automatically # determine that DriftCoherence will allow an analytical solution. fit_model = fit_adjust_model(sample=sample, model=model, fitting_method="differential_evolution", lossfunction=LossRobustBIC, verbose=False) param = fit_model.get_model_parameters() Drift = np.asarray(param[0]) Delay = np.asarray(param[1]) return Drift, Delay
] # <-- Task parameters ("conditions"). Should be the same name as in the sample. # We must always define the get_drift function, which is used to compute the instantaneous value of drift. def get_drift(self, conditions, **kwargs): return self.driftcoh * conditions['coh'] # Define a model which uses our new DriftCoherence defined above. from ddm import Model, Fittable from ddm.functions import fit_adjust_model, display_model from ddm.models import NoiseConstant, BoundConstant, OverlayChain, OverlayNonDecision, OverlayPoissonMixture model_rs = Model( name='Roitman data, drift varies with coherence', drift=DriftCoherence(driftcoh=Fittable(minval=0, maxval=20)), noise=NoiseConstant(noise=1), bound=BoundConstant(B=Fittable(minval=.1, maxval=1.5)), # Since we can only have one overlay, we use # OverlayChain to string together multiple overlays. # They are applied sequentially in order. OverlayNonDecision # implements a non-decision time by shifting the # resulting distribution of response times by # `nondectime` seconds. overlay=OverlayChain(overlays=[ OverlayNonDecision(nondectime=Fittable(minval=0, maxval=.4)), OverlayPoissonMixture(pmixturecoef=.02, rate=1) ]), dx=.001, dt=.01, T_dur=2)
# Simple demonstration of PyDDM. # Create a simple model with constant drift, noise, and bounds. from ddm import Model from ddm.models import DriftConstant, NoiseConstant, BoundConstant, OverlayNonDecision, ICPointSourceCenter from ddm.functions import fit_adjust_model, display_model model = Model(name='Simple model', drift=DriftConstant(drift=2.2), noise=NoiseConstant(noise=1.5), bound=BoundConstant(B=1.1), overlay=OverlayNonDecision(nondectime=.1), dx=.001, dt=.01, T_dur=2) # Solve the model, i.e. simulate the differential equations to # generate a probability distribution solution. display_model(model) sol = model.solve() # Now, sample from the model solution to create a new generated # sample. samp = sol.resample(1000) # Fit a model identical to the one described above on the newly # generated data so show that parameters can be recovered. from ddm import Fittable, Fitted from ddm.models import LossRobustBIC from ddm.functions import fit_adjust_model model_fit = Model(name='Simple model (fitted)', drift=DriftConstant(drift=Fittable(minval=0, maxval=4)), noise=NoiseConstant(noise=Fittable(minval=.5, maxval=4)),
def Fit_DDM_Group_JK_ib(domain='whole'): # create a df to record the output data column_names = ['domain', 'RS_level', 'sub_omit'] + model_rDDM.get_model_parameter_names() + \ ['loss_func_value', 'criterion', 'sample_size', 'on_bound'] rDDM_fitting_jk = pd.DataFrame(columns=column_names) # decide whether to fit rDDM on the whole dataset, # the advantageous trials or disadvantageous trials if domain == 'adv': data_for_fit = data[data['domain_group'] == 1] elif domain == 'dis': data_for_fit = data[data['domain_group'] == 2] else: data_for_fit = data # fit on groups of different RS levels for group in np.sort(data_for_fit['RS_level'].unique()): data_subgroup = data_for_fit[data_for_fit['RS_level'] == group] # omit subjects one at a time for sub_omit in np.sort(data_subgroup['subject'].unique()): # find the current fitting parameters in the fit_ref where = np.where((fit_ref['domain'] == domain) & (fit_ref['RS_level'] == group) & (fit_ref['sub_omit'] == str(sub_omit))) where = int(where[0]) # allow for extra ranges from the best fitting results extra = 0.05 extra_v_dis = 0.0005 extra_v_els = 0.005 if domain == 'dis': vg_max = fit_ref.iloc[where]['vg_best'] + extra_v_dis vg_min = fit_ref.iloc[where]['vg_best'] - extra_v_dis vl_max = fit_ref.iloc[where]['vl_best'] + extra_v_dis vl_min = fit_ref.iloc[where]['vl_best'] - extra_v_dis else: vg_max = fit_ref.iloc[where]['vg_best'] + extra_v_els vg_min = fit_ref.iloc[where]['vg_best'] - extra_v_els vl_max = fit_ref.iloc[where]['vl_best'] + extra_v_els vl_min = fit_ref.iloc[where]['vl_best'] - extra_v_els fixed_max = fit_ref.iloc[where]['fixed_best'] + extra fixed_min = fit_ref.iloc[where]['fixed_best'] - extra B_max = fit_ref.iloc[where]['B_best'] + extra B_min = fit_ref.iloc[where]['B_best'] - extra x0_max = fit_ref.iloc[where]['x0_best'] + extra x0_min = fit_ref.iloc[where]['x0_best'] - extra nondectime_max = fit_ref.iloc[where]['nondectime_best'] + extra nondectime_min = fit_ref.iloc[where]['nondectime_best'] - extra # create a DDM modell based on the current fitting range model_rDDM_ib = Model( name='Risk_DDM_individual_range_fit', drift=Risk_Drift(vg=Fittable(minval=vg_min, maxval=vg_max), vl=Fittable(minval=vl_min, maxval=vl_max), fixed=Fittable(minval=fixed_min, maxval=fixed_max)), IC=Biased_Start(x0=Fittable(minval=x0_min, maxval=x0_max)), noise=NoiseConstant(noise=1), bound=BoundConstant(B=Fittable(minval=B_min, maxval=B_max)), # Uniform Mixture Model overlay=OverlayChain(overlays=[ OverlayNonDecision(nondectime=Fittable( minval=nondectime_min, maxval=nondectime_max)), OverlayUniformMixture(umixturecoef=.05) ]), dx=0.001, dt=0.001, T_dur=10) # dx=0.01, dt=0.01, T_dur=10) data_jk = data_subgroup[data_subgroup['subject'] != sub_omit] sample_size = data_jk.shape[0] # create a sample and start fitting data_jk_sample = Sample.from_pandas_dataframe( data_jk, rt_column_name="RT", correct_column_name="accept") fit_sample = fit_adjust_model( sample=data_jk_sample, model=model_rDDM_ib, fitting_method='differential_evolution') # sort out results result_list = [[domain, group, sub_omit] + fit_sample.get_model_parameters() + \ [fit_sample.fitresult.value(), fit_sample.fitresult.loss, sample_size, 0]] # 0 in the end is the place holder for the counts in the on_buond column result_df = pd.DataFrame(result_list, columns=column_names) # check whether the estimated results are on the limits of the fitting ranges if result_df['vg'][0] == vg_min or result_df['vg'][0] == vg_max: result_df['on_bound'][0] += 1 if result_df['vl'][0] == vl_min or result_df['vl'][0] == vl_max: result_df['on_bound'][0] += 1 if result_df['fixed'][0] == fixed_min or result_df['fixed'][ 0] == fixed_max: result_df['on_bound'][0] += 1 if result_df['B'][0] == B_min or result_df['B'][0] == B_max: result_df['on_bound'][0] += 1 if result_df['x0'][0] == x0_min or result_df['x0'][0] == x0_max: result_df['on_bound'][0] += 1 if result_df['nondectime'][0] == nondectime_min or result_df[ 'nondectime'][0] == nondectime_max: result_df['on_bound'][0] += 1 # append the results rDDM_fitting_jk = rDDM_fitting_jk.append(result_df, ignore_index=True) return rDDM_fitting_jk