示例#1
0
    def setup_model(self):
        """
        Function to setup model. 
        """
        class DriftCoherence(ddm.models.Drift):
            name = "Drift depends linearly on coherence"
            # Parameter that should be included in the ddm
            required_parameters = ["driftcoherence"]
            # Task Parameter, i.e. coherence
            required_conditions = ["coherence"]

            # Define the get_drift function
            def get_drift(self, conditions, **kwargs):
                return self.driftcoherence * conditions['coherence']

        # Set up Model with Drift depending on Coherence
        model = Model(
            name='Noise Model - Drift varies with coherence',
            drift=DriftCoherence(driftcoherence=Fittable(minval=0, maxval=20)),
            noise=NoiseConstant(noise=1),
            bound=BoundConstant(B=Fittable(minval=.1, maxval=1.5)),
            overlay=OverlayChain(overlays=[
                OverlayNonDecision(nondectime=Fittable(minval=0, maxval=.4)),
                OverlayPoissonMixture(pmixturecoef=.02, rate=1)
            ]),
            dx=.01,
            dt=.01,
            T_dur=2)
        return model
示例#2
0
def make_model(sample, model_settings):
    
    # model components:
    z = make_z(sample=sample, 
                z_depends_on=model_settings['depends_on']['z'])
    drift = make_drift(sample=sample, 
                        drift_bias=model_settings['drift_bias'], 
                        v_depends_on=model_settings['depends_on']['v'], 
                        b_depends_on=model_settings['depends_on']['b'])
    a = make_a(sample=sample, 
                urgency=model_settings['urgency'], 
                a_depends_on=model_settings['depends_on']['a'], 
                u_depends_on=model_settings['depends_on']['u'])
    t = make_t(sample=sample, 
                t_depends_on=model_settings['depends_on']['t'])
    T_dur = model_settings['T_dur']

    # limits:
    ranges = {
            'z':(0.05,0.95),               # starting point
            'v':(0,5),                     # drift rate
            'b':(-5,5),                    # drift bias
            'a':(0.1,5),                   # bound
            # 'u':(-T_dur*10,T_dur*10),    # hyperbolic collapse
            'u':(0.01,T_dur*10),           # hyperbolic collapse
            't':(0,2),                     # non-decision time
            }

    # put together:
    if model_settings['start_bias']:
        initial_condition = z(**{param:Fittable(minval=ranges[param[0]][0], maxval=ranges[param[0]][1]) for param in z.required_parameters})
    else:
        initial_condition = z(**{'z':0.5})
    model = Model(name='stimulus coding model / collapsing bound',
                IC=initial_condition,
                drift=drift(**{param:Fittable(minval=ranges[param[0]][0], maxval=ranges[param[0]][1]) for param in drift.required_parameters}),
                bound=a(**{param:Fittable(minval=ranges[param[0]][0], maxval=ranges[param[0]][1]) for param in a.required_parameters}),
                overlay=OverlayChain(overlays=[t(**{param:Fittable(minval=ranges[param[0]][0], maxval=ranges[param[0]][1]) for param in t.required_parameters}),
                                                OverlayUniformMixture(umixturecoef=0)]),
                                                # OverlayPoissonMixture(pmixturecoef=.01, rate=1)]),
                noise=NoiseConstant(noise=1),
                dx=.005, dt=.01, T_dur=T_dur)
    return model
def DDM_FIT(RT, ANSWER):
    df = []

    # RT is scalles to seconds, the function takes seconds
    df = pd.DataFrame({'RT': RT / 1000, 'correct': ANSWER})
    df.head()
    sample = Sample.from_pandas_dataframe(df,
                                          rt_column_name="RT",
                                          correct_column_name="correct")
    model = Model(
        name='Model',
        drift=DriftConstant(drift=Fittable(minval=6, maxval=25)),
        noise=NoiseConstant(
            noise=1.5),  #(noise=Fittable(minval=0.5, maxval=2.5)),
        bound=BoundConstant(B=2.5),
        overlay=OverlayChain(overlays=[
            OverlayNonDecision(nondectime=Fittable(minval=0, maxval=.8)),
            OverlayPoissonMixture(pmixturecoef=.02, rate=1)
        ]),
        dx=.001,
        dt=.01,
        T_dur=2)

    # Fitting this will also be fast because PyDDM can automatically
    # determine that DriftCoherence will allow an analytical solution.
    fit_model = fit_adjust_model(sample=sample,
                                 model=model,
                                 fitting_method="differential_evolution",
                                 lossfunction=LossRobustBIC,
                                 verbose=False)

    param = fit_model.get_model_parameters()

    Drift = np.asarray(param[0])
    Delay = np.asarray(param[1])

    return Drift, Delay
示例#4
0
    ]  # <-- Task parameters ("conditions"). Should be the same name as in the sample.

    # We must always define the get_drift function, which is used to compute the instantaneous value of drift.
    def get_drift(self, conditions, **kwargs):
        return self.driftcoh * conditions['coh']


# Define a model which uses our new DriftCoherence defined above.
from ddm import Model, Fittable
from ddm.functions import fit_adjust_model, display_model
from ddm.models import NoiseConstant, BoundConstant, OverlayChain, OverlayNonDecision, OverlayPoissonMixture

model_rs = Model(
    name='Roitman data, drift varies with coherence',
    drift=DriftCoherence(driftcoh=Fittable(minval=0, maxval=20)),
    noise=NoiseConstant(noise=1),
    bound=BoundConstant(B=Fittable(minval=.1, maxval=1.5)),
    # Since we can only have one overlay, we use
    # OverlayChain to string together multiple overlays.
    # They are applied sequentially in order.  OverlayNonDecision
    # implements a non-decision time by shifting the
    # resulting distribution of response times by
    # `nondectime` seconds.
    overlay=OverlayChain(overlays=[
        OverlayNonDecision(nondectime=Fittable(minval=0, maxval=.4)),
        OverlayPoissonMixture(pmixturecoef=.02, rate=1)
    ]),
    dx=.001,
    dt=.01,
    T_dur=2)
示例#5
0
文件: simple.py 项目: ntardiff/PyDDM
# Simple demonstration of PyDDM.

# Create a simple model with constant drift, noise, and bounds.
from ddm import Model
from ddm.models import DriftConstant, NoiseConstant, BoundConstant, OverlayNonDecision, ICPointSourceCenter
from ddm.functions import fit_adjust_model, display_model

model = Model(name='Simple model',
              drift=DriftConstant(drift=2.2),
              noise=NoiseConstant(noise=1.5),
              bound=BoundConstant(B=1.1),
              overlay=OverlayNonDecision(nondectime=.1),
              dx=.001, dt=.01, T_dur=2)

# Solve the model, i.e. simulate the differential equations to
# generate a probability distribution solution.
display_model(model)
sol = model.solve()

# Now, sample from the model solution to create a new generated
# sample.
samp = sol.resample(1000)

# Fit a model identical to the one described above on the newly
# generated data so show that parameters can be recovered.
from ddm import Fittable, Fitted
from ddm.models import LossRobustBIC
from ddm.functions import fit_adjust_model
model_fit = Model(name='Simple model (fitted)',
                  drift=DriftConstant(drift=Fittable(minval=0, maxval=4)),
                  noise=NoiseConstant(noise=Fittable(minval=.5, maxval=4)),
def Fit_DDM_Group_JK_ib(domain='whole'):

    # create a df to record the output data
    column_names = ['domain', 'RS_level', 'sub_omit'] + model_rDDM.get_model_parameter_names() + \
    ['loss_func_value', 'criterion', 'sample_size', 'on_bound']
    rDDM_fitting_jk = pd.DataFrame(columns=column_names)

    # decide whether to fit rDDM on the whole dataset,
    # the advantageous trials or disadvantageous trials
    if domain == 'adv':
        data_for_fit = data[data['domain_group'] == 1]
    elif domain == 'dis':
        data_for_fit = data[data['domain_group'] == 2]
    else:
        data_for_fit = data

    # fit on groups of different RS levels
    for group in np.sort(data_for_fit['RS_level'].unique()):
        data_subgroup = data_for_fit[data_for_fit['RS_level'] == group]

        # omit subjects one at a time
        for sub_omit in np.sort(data_subgroup['subject'].unique()):

            # find the current fitting parameters in the fit_ref
            where = np.where((fit_ref['domain'] == domain)
                             & (fit_ref['RS_level'] == group)
                             & (fit_ref['sub_omit'] == str(sub_omit)))

            where = int(where[0])

            # allow for extra ranges from the best fitting results
            extra = 0.05
            extra_v_dis = 0.0005
            extra_v_els = 0.005

            if domain == 'dis':
                vg_max = fit_ref.iloc[where]['vg_best'] + extra_v_dis
                vg_min = fit_ref.iloc[where]['vg_best'] - extra_v_dis
                vl_max = fit_ref.iloc[where]['vl_best'] + extra_v_dis
                vl_min = fit_ref.iloc[where]['vl_best'] - extra_v_dis
            else:
                vg_max = fit_ref.iloc[where]['vg_best'] + extra_v_els
                vg_min = fit_ref.iloc[where]['vg_best'] - extra_v_els
                vl_max = fit_ref.iloc[where]['vl_best'] + extra_v_els
                vl_min = fit_ref.iloc[where]['vl_best'] - extra_v_els

            fixed_max = fit_ref.iloc[where]['fixed_best'] + extra
            fixed_min = fit_ref.iloc[where]['fixed_best'] - extra
            B_max = fit_ref.iloc[where]['B_best'] + extra
            B_min = fit_ref.iloc[where]['B_best'] - extra
            x0_max = fit_ref.iloc[where]['x0_best'] + extra
            x0_min = fit_ref.iloc[where]['x0_best'] - extra
            nondectime_max = fit_ref.iloc[where]['nondectime_best'] + extra
            nondectime_min = fit_ref.iloc[where]['nondectime_best'] - extra

            # create a DDM modell based on the current fitting range
            model_rDDM_ib = Model(
                name='Risk_DDM_individual_range_fit',
                drift=Risk_Drift(vg=Fittable(minval=vg_min, maxval=vg_max),
                                 vl=Fittable(minval=vl_min, maxval=vl_max),
                                 fixed=Fittable(minval=fixed_min,
                                                maxval=fixed_max)),
                IC=Biased_Start(x0=Fittable(minval=x0_min, maxval=x0_max)),
                noise=NoiseConstant(noise=1),
                bound=BoundConstant(B=Fittable(minval=B_min, maxval=B_max)),

                # Uniform Mixture Model
                overlay=OverlayChain(overlays=[
                    OverlayNonDecision(nondectime=Fittable(
                        minval=nondectime_min, maxval=nondectime_max)),
                    OverlayUniformMixture(umixturecoef=.05)
                ]),
                dx=0.001,
                dt=0.001,
                T_dur=10)
            # dx=0.01, dt=0.01, T_dur=10)

            data_jk = data_subgroup[data_subgroup['subject'] != sub_omit]

            sample_size = data_jk.shape[0]

            # create a sample and start fitting
            data_jk_sample = Sample.from_pandas_dataframe(
                data_jk, rt_column_name="RT", correct_column_name="accept")

            fit_sample = fit_adjust_model(
                sample=data_jk_sample,
                model=model_rDDM_ib,
                fitting_method='differential_evolution')

            # sort out results
            result_list = [[domain, group, sub_omit] + fit_sample.get_model_parameters() + \
                           [fit_sample.fitresult.value(), fit_sample.fitresult.loss, sample_size, 0]]
            # 0 in the end is the place holder for the counts in the on_buond column

            result_df = pd.DataFrame(result_list, columns=column_names)

            # check whether the estimated results are on the limits of the fitting ranges
            if result_df['vg'][0] == vg_min or result_df['vg'][0] == vg_max:
                result_df['on_bound'][0] += 1

            if result_df['vl'][0] == vl_min or result_df['vl'][0] == vl_max:
                result_df['on_bound'][0] += 1

            if result_df['fixed'][0] == fixed_min or result_df['fixed'][
                    0] == fixed_max:
                result_df['on_bound'][0] += 1

            if result_df['B'][0] == B_min or result_df['B'][0] == B_max:
                result_df['on_bound'][0] += 1

            if result_df['x0'][0] == x0_min or result_df['x0'][0] == x0_max:
                result_df['on_bound'][0] += 1

            if result_df['nondectime'][0] == nondectime_min or result_df[
                    'nondectime'][0] == nondectime_max:
                result_df['on_bound'][0] += 1

            # append the results
            rDDM_fitting_jk = rDDM_fitting_jk.append(result_df,
                                                     ignore_index=True)

    return rDDM_fitting_jk