def customCrossover(ind1, ind2):

    return tools.cxSimulatedBinaryBounded(ind1,
                                            ind2,
                                            eta = ETA_C, 
                                            low  = [limits[j][0] for j in range(10)] + [limits[j][0] for j in range(10)], 
                                            up = [limits[j][1] for j in range(10)] + [limits[j][1] for j in range(10)])
示例#2
0
def crossover(ind1, ind2, eta):
    """Performs a 2-Point Crossover on Individuals.

    :ind1: first parent
    :ind2: second parent
    :returns: two offsprings as a tuple

    """
    # get the genomes
    genome1 = ind1.get_values()
    genome2 = ind2.get_values()

    # perform the crossover only on the genomes
    genome1, genome2 = tools.cxSimulatedBinaryBounded(
        genome1,
        genome2,
        eta,  # eta_c 2.0 == wide search; 5.0 narrow search
        0.0,  # lower bound
        1.0)  # upper bound

    # change the values of the individuals
    ind1.set_values(genome1)
    ind2.set_values(genome2)

    return (ind1, ind2)
示例#3
0
文件: torsion.py 项目: sperezl/gaudi
 def mate(self, mate):
     self_allele, mate_allele = cxSimulatedBinaryBounded(
         self.allele,
         mate.allele,
         eta=self.cxeta,
         low=-0.5 * self.flexibility,
         up=0.5 * self.flexibility)
     self.allele[:] = [round(n, self.precision) for n in self_allele]
     mate.allele[:] = [round(n, self.precision) for n in mate_allele]
def genetic(evaluate_func, limits, generations=300, popsize=20, elitepercent=.1, crossoveredpercent=.4, sbbx_eta=1.0, log=False, callback=None):
    assert elitepercent + crossoveredpercent <= 1.0
    elitesize = int(popsize * elitepercent)
    crossoveredsize = int(popsize * crossoveredpercent)
    crossoveredsize = crossoveredsize - 1 if crossoveredsize & 1 else crossoveredsize # make it even
    mutatedsize = popsize - elitesize - crossoveredsize
    assert mutatedsize >= 0

    toolbox.register("individual", tools.initIterate, creator.Individual, get_ind_function(limits))
    #toolbox.register("population", tools.initRepeat, list, toolbox.individual)
    
    toolbox.register("evaluate", evaluate_func)
    toolbox.register("mutate", get_mutate_func(limits))
    toolbox.register("mate", lambda a, b: tools.cxSimulatedBinaryBounded(a, b, sbbx_eta, low=list(map(lambda t: t[0], limits)), up=list(map(lambda t: t[1], limits))))
    #toolbox.register("select", tools.selTournament, tournsize=3)
    #toolbox.register("select", tools.selBest)
    
    pop = [toolbox.individual() for _ in range(popsize)]
    
    #logbook = tools.Logbook()
    
    for gen in range(generations):
        update_fitnesses(pop)

        #record = stats.compile(pop)
        #logbook.record(gen=gen, **record)
        best=max(pop, key=lambda x: x.fitness.values[0])

        if log:
            print("Gen {}: best: {} !!! {}".format(gen, best, best.fitness.values[0]))#record['max']))
        if callback is not None:
            #if callback([(t, t.fitness.values[0]) for t in pop]) == True:
            if callback(best.fitness.values[0]) == True:
                break


        elite = tools.selBest(pop, k=elitesize)

        crossovered = list(map(toolbox.clone, tools.selTournament(pop, k=crossoveredsize, tournsize=2)))
        for child1, child2 in zip(crossovered[::2], crossovered[1::2]):
            toolbox.mate(child1, child2)
            del child1.fitness.values
            del child2.fitness.values
        
        mutated = list(map(toolbox.clone, random.sample(pop, mutatedsize)))
        for mutant in mutated:
            toolbox.mutate(mutant)
            del mutant.fitness.values
                
        pop[:] = elite + crossovered + mutated
        
    return best, best.fitness.values[0]#logbook
示例#5
0
 def my_crossover(self,LL,UU,ind1, ind2):
     t=self.t
     typeOfInput=len(t)
     ind11 = []
     ind22 = []
     for i in range(typeOfInput):
         if t[i] =='float':
             ind1var1,ind2var1=tools.cxSimulatedBinaryBounded([ind1[i]], [ind2[i]], low=LL[i], up=UU[i], eta=20.0)
             ind11.append(ind1var1[0])
             ind22.append(ind2var1[0])
         elif t[i]=='int':
             ind1var2,ind2var2=tools.cxUniform([ind1[i]], [ind2[i]],indpb=0.9)
             ind11.append(ind1var2[0])
             ind22.append(ind2var2[0])
         elif t[i]=='bool':
             toss = random.random()
             if toss > 0.5:
                 ind1var3,ind2var3=ind2[i], ind1[i]
                 ind11.append(ind1var3)
                 ind22.append(ind2var3)
     return ind11,ind22
示例#6
0
    def init_algorithm(self, params):

        toolbox = base.Toolbox()
        ind_size = self.problem.ind_size
        ngen = params['generations']
        nind = params['num_individuals']
        cxpb, mutpb, lb, ub, mu, lam = 0.7, 0.2, -1.0, 1.0, nind, nind

        if hasattr(creator, 'FitnessMin') is False:
            creator.create('FitnessMin', base.Fitness, weights=(-1.0, ))

        if hasattr(creator, 'Individual') is False:
            kw0 = {'typecode': 'd', 'fitness': creator.FitnessMin}
            creator.create('Individual', array.array, **kw0)

        atr = lambda: [random.uniform(lb, ub) for _ in range(ind_size)]
        ind = lambda: tools.initIterate(creator.Individual, atr)
        population = [ind() for _ in range(nind)]

        kw1 = {'low': lb, 'up': ub, 'eta': 20.0, 'indpb': 1.0 / ind_size}
        mut = lambda xs: tools.mutPolynomialBounded(xs, **kw1)
        kw2 = {'low': lb, 'up': ub, 'eta': 20.0}
        crs = lambda i1, i2: tools.cxSimulatedBinaryBounded(i1, i2, **kw2)
        sel = lambda p, n: tools.selTournament(p, n, tournsize=3)

        toolbox.register('evaluate', self.problem.objective_function)
        toolbox.register('mate', crs)
        toolbox.register('mutate', mut)
        toolbox.register('select', sel)

        stats = tools.Statistics(lambda ind: ind.fitness.values)
        stats.register('min', np.min)
        self.hof = tools.HallOfFame(5)

        args = (population, toolbox, mu, lam, cxpb, mutpb, ngen)
        kw3 = {'stats': stats, 'halloffame': self.hof, 'verbose': True}
        self.algorithm = lambda: algorithms.eaMuPlusLambda(*args, **kw3)
示例#7
0
    def nsga2_1iter(self, current_pop):
        """

        Run one iteration of the NSGA-II optimizer.
        Based on the crossover and mutation probabilities, the
        offsprings are created and evaluated. Based on the fitness
        of these offsprings and of the current population,
        a new population is created.

        Parameters
        ----------
        current_pop : list
            The initial population.

        Returns
        -------
        new_pop : list
            The updated population.

        """

        # create offspring, clone of current population
        offspring = [deepcopy(ind) for ind in current_pop]

        # perform crossover
        for ind1, ind2 in zip(offspring[::2], offspring[1::2]):
            if random.random() < self.run_dict['cx prob']:

                # apply crossover operator
                # in place editing of individuals
                tools.cxSimulatedBinaryBounded(ind1, ind2,
                                               self.run_dict['eta'],
                                               self.space_obj.l_b,
                                               self.space_obj.u_b)

                # set the fitness to an empty tuple of modified individuals
                del ind1.fitness.values
                del ind2.fitness.values

        # perform mutation
        for mutant in offspring:

            if random.random() < self.run_dict['mut prob']:

                # apply mutation operator
                # in place editing of individuals
                tools.mutPolynomialBounded(mutant, self.run_dict['eta'],
                                           self.space_obj.l_b,
                                           self.space_obj.u_b,
                                           self.run_dict['mut prob'])

                # set fitness to empty tuple of modified individuals
                del mutant.fitness.values

        # evaluate the modified individuals
        n_eval = 0
        invalid_indices = []
        invalid_fit_individuals = []
        for i, ind in enumerate(offspring):

            if not ind.fitness.valid:

                invalid_indices.append(i)
                invalid_fit_individuals.append(ind)

        if len(invalid_fit_individuals) > 0:

            # create samples to evaluate
            individuals_to_eval, unc_samples = self.define_samples_to_eval(
                invalid_fit_individuals)

            # evaluate samples
            fitnesses = self.evaluate_samples(individuals_to_eval)
            n_eval += len(individuals_to_eval)

            # assign fitness to the orginal samples list
            individuals_to_assign = self.assign_fitness_to_population(
                invalid_fit_individuals, fitnesses, unc_samples)

            # construct offspring list
            for i, ind in zip(invalid_indices, individuals_to_assign):

                offspring[i] = deepcopy(ind)

        # select next population using the NSGA-II operator
        new_pop = tools.selNSGA2(current_pop + offspring, len(current_pop))

        # update the population and fitness files
        self.append_points_to_file(new_pop, 'population')

        fitness_values = [x.fitness.values for x in new_pop]
        self.append_points_to_file(fitness_values, 'fitness')

        # update the STATUS file
        ite, evals = self.parse_status()
        self.write_status('%8i%8i' % (ite + 1, evals + n_eval))

        return new_pop
示例#8
0
    def init_algorithm(self, params):

        if params['algorithm_class'] not in ['simple', 'multiobjective']:
            raise ValueError('Non-existent algorithm class.')

        toolbox = base.Toolbox()
        ngen = params['generations']
        nind = params['num_individuals']
        cxpb = 0.5 if params['algorithm_class'] == 'simple' else 0.9
        lb, ub = -1.0, 1.0
        ind_size = self.problem.ind_size

        if nind % 4 != 0:
            raise ValueError('Number of individuals must be multiple of four')

        if hasattr(creator, 'FitnessMin') is False:
            creator.create('FitnessMin', base.Fitness, weights=(-1.0, -1.0))

        if hasattr(creator, 'Individual') is False:
            creator.create('Individual',
                           array.array,
                           typecode='d',
                           fitness=creator.FitnessMin)

        atr = lambda: [random.uniform(lb, ub) for _ in range(ind_size)]
        ind = lambda: tools.initIterate(creator.Individual, atr)
        population = [ind() for _ in range(nind)]

        if params['algorithm_class'] == 'simple':
            self.hof = tools.HallOfFame(1)
            mut = lambda xs: tools.mutGaussian(xs, mu=0, sigma=1, indpb=0.1)
            crs = tools.cxTwoPoint
            sel = lambda p, n: tools.selTournament(p, n, tournsize=3)
        else:
            self.hof = tools.ParetoFront()
            mut = lambda xs: tools.mutPolynomialBounded(
                xs, low=lb, up=ub, eta=20.0, indpb=1.0 / ind_size)
            crs = lambda ind1, ind2: tools.cxSimulatedBinaryBounded(
                ind1, ind2, low=lb, up=ub, eta=20.0)
            sel = tools.selNSGA2

        toolbox.register('evaluate', self.problem.objective_function)
        toolbox.register('mate', crs)
        toolbox.register('mutate', mut)
        toolbox.register('select', sel)

        stats = tools.Statistics(lambda ind: ind.fitness.values)
        stats.register('avg', np.mean, axis=0)
        stats.register('std', np.std, axis=0)
        stats.register('min', np.min, axis=0)
        stats.register('max', np.max, axis=0)

        args = (population, toolbox)
        kwargs = {'cxpb': cxpb, 'ngen': ngen, 'stats': stats}
        kwargs['halloffame'] = self.hof
        if params['algorithm_class'] == 'simple':
            kwargs['mutpb'] = 0.2
            kwargs['verbose'] = True
            self.algorithm = lambda: algorithms.eaSimple(*args, **kwargs)
        else:
            self.algorithm = lambda: self.multiobjective(*args, **kwargs)
示例#9
0
    def __init__(self, params: AlgorithmParameters):
        """Initialize the genetic algorithm that will solve the control synthesis problem.
        The params dictionary has the following items
        num_control_params      The number of control parameters used in a solution.
        generations             The number of iterations of the genetic algorithm to run.

        """
        assert len(params.lower_bounds) == len(params.upper_bounds)

        self.ind_size = len(params.lower_bounds)
        ngen = params.generations
        nind = params.num_individuals
        cxpb, mutpb, mu, lam = params.crossover_prob, params.mutation_prob, nind, nind

        # Here we are creating two new types. The FitnessMin type and the Individual type.
        # FitnessMin inherits from deap.base.Fitness and has a new weights attribute that is
        # a tuple. For single objective optimization, the weights attribute has one element
        # for multi-objective optimization it will have multiple elements. A negative weight
        # indicates this is a minimization problem.
        if hasattr(creator, 'FitnessMin') is False:
            creator.create('FitnessMin', base.Fitness, weights=(-1.0, ))

        # The individual type inherits from array.array (could use list) and it needs a
        # fitness attribute to know how to calculate the fitness of the individual.
        # Arrays store only one type of data. This is set by the tyepcode paramter. 'd' is for double.
        if hasattr(creator, 'Individual') is False:
            kw0 = {'typecode': 'd', 'fitness': creator.FitnessMin}
            creator.create('Individual', array.array, **kw0)

        # Creates the initial lists of individuals.
        atr = lambda: [
            random.uniform(lb, ub)
            for lb, ub in zip(params.lower_bounds, params.upper_bounds)
        ]
        ind = lambda: creator.Individual(atr())
        population = [ind() for _ in range(nind)]

        # The toolbox is a container to store partial functions. In particular we want the evaluate, mate, mutate,
        # and select genetic algorithm functions defined here.
        toolbox = base.Toolbox()

        kw1 = {
            'low': params.lower_bounds,
            'up': params.upper_bounds,
            'eta': 20.0,
            'indpb': 1.0 / self.ind_size
        }
        mut = lambda xs: tools.mutPolynomialBounded(xs, **kw1)
        kw2 = {
            'low': params.lower_bounds,
            'up': params.upper_bounds,
            'eta': 20.0
        }
        crs = lambda i1, i2: tools.cxSimulatedBinaryBounded(i1, i2, **kw2)
        sel = lambda p, n: tools.selTournament(p, n, tournsize=3)

        toolbox.register('evaluate', params.cost_function)
        toolbox.register('mate', crs)
        toolbox.register('mutate', mut)
        toolbox.register('select', sel)

        # DEAP provides objects taht will record algorithm statisitics and keep trak of the best solutions.
        stats = tools.Statistics(lambda ind: ind.fitness.values)
        stats.register('min', np.min)
        self.hof = tools.HallOfFame(5)

        # Setting up the DEAP library for the genetic algorithm comes down to creating and
        # executing an algorithm function. There are a number of pre-build algorithms that
        # can be used rather than coding your own. The eaMuPlusLambda algorithm requires
        # the parameters that have been generated above.
        args = (population, toolbox, mu, lam, cxpb, mutpb, ngen)
        kw3 = {'stats': stats, 'halloffame': self.hof, 'verbose': True}
        self.algorithm = lambda: algorithms.eaMuPlusLambda(*args, **kw3)
示例#10
0
 def genarate_1(self, parent1, parent2,countFigure):
     self.gen.append(self.mateTypeOrder(parent1, parent2, countFigure))
     newones = cxSimulatedBinaryBounded(parent1.gen[1], parent2.gen[1], uniform(15,20), 0, 1)
     self.gen.append(newones[randint(0,1)])
     self.generateImg()