def singleRun(): params = decision.Params() params.decisionType = 'probabilistic' params.memory = False params.nSteps = 1000 params.nAgents = 1 params.output = 'output_dmp_0.csv' decision.run(params)
def singleRun(): params = decision.Params() params.decisionType = "probabilistic" params.memory = False params.nSteps = 1000 params.nAgents = 1 params.output = "output_dmp_0.csv" decision.run(params)
def singleRun(): params = decision.Params() params.nSteps = 100 params.nAgents = 10 params.output = 'output.csv' params.maxEnergy = 10 params.energyCost = 1 params.resourceGrowthRate = 1 params.xDim = 10 params.yDim = 10 decision.run(params)
def equilibrium(): params = decision.Params() params.nSteps = 5000 params.radius = 1 params.nAgents = 30 params.output = 'fig1.csv' params.maxEnergy = 10 params.energyCost = 2 params.resourceGrowthRate = 2 params.xDim = 30 params.yDim = 30 decision.run(params)
def multifinality(): repetitions = 3 params = decision.Params() params.nSteps = 300 params.radius = 3 params.output = 'fig2b.csv' params.maxEnergy = 50 params.energyCost = 10 params.resourceGrowthRate = 10 params.nAgents = 50 params.xDim = 30 params.yDim = 30 params.oneFile = True for i in range(repetitions): print('run:',i,'from:',repetitions) params.numRun = i decision.run(params)
def equifinality(): repetitions = 10 params = decision.Params() params.nSteps = 150 params.radius = 1 params.output = 'fig2a.csv' params.maxEnergy = 10 params.energyCost = 3 params.resourceGrowthRate = 3 params.xDim = 30 params.yDim = 30 params.oneFile = True for i in range(repetitions): print('run:',i,'from:',repetitions) params.numRun = i params.nAgents = random.randint(1,200) decision.run(params)
def all(): # experiment numRuns = 10 decisionTypeSweep = ["greedy", "probabilistic"] memoryMapSweep = [True, False] params = decision.Params() totalRuns = 0 for i in decisionTypeSweep: for j in memoryMapSweep: params.decisionType = i params.memory = j for run in range(0, numRuns): print("run:", totalRuns + 1, "of:", numRuns * len(memoryMapSweep) * len(decisionTypeSweep)) params.numRun = totalRuns params.output = "output_dmp_" + str(params.numRun) + ".csv" totalRuns += 1 decision.run(params)
def all(): # experiment numRuns = 10 decisionTypeSweep = ['greedy','probabilistic'] memoryMapSweep = [True, False] params = decision.Params() totalRuns = 0 for i in decisionTypeSweep: for j in memoryMapSweep: params.decisionType = i params.memory = j for run in range(0, numRuns): print('run:',totalRuns+1,'of:',numRuns*len(memoryMapSweep)*len(decisionTypeSweep)) params.numRun = totalRuns params.output = 'output_dmp_'+str(params.numRun)+'.csv' totalRuns += 1 decision.run(params)
def convergence(): # experiment numRuns = 10 decisionTypeSweep = ["greedy"] memoryMapSweep = [False] params = decision.Params() params.nSteps = 500 totalRuns = 0 for i in decisionTypeSweep: for j in memoryMapSweep: params.decisionType = i params.memory = j for run in range(0, numRuns): print("run:", totalRuns + 1, "of:", numRuns * len(memoryMapSweep) * len(decisionTypeSweep)) params.numRun = totalRuns params.nAgents = random.randint(1, 200) params.output = "output_dmp_" + str(params.numRun) + ".csv" totalRuns += 1 decision.run(params)
def convergence(): # experiment numRuns = 10 decisionTypeSweep = ['greedy'] memoryMapSweep = [False] params = decision.Params() params.nSteps = 500 totalRuns = 0 for i in decisionTypeSweep: for j in memoryMapSweep: params.decisionType = i params.memory = j for run in range(0, numRuns): print('run:',totalRuns+1,'of:',numRuns*len(memoryMapSweep)*len(decisionTypeSweep)) params.numRun = totalRuns params.nAgents = random.randint(1,200) params.output = 'output_dmp_'+str(params.numRun)+'.csv' totalRuns += 1 decision.run(params)
def exploreRadius(): repetitions = 1000 radiusValues = range(1,31) numRuns = repetitions*len(radiusValues) numRun = 0 for i in radiusValues: for j in range(repetitions): params = decision.Params() params.oneFile = False params.nSteps = 5001 params.nAgents = 50 params.maxEnergy = 100 params.energyCost = 25 params.resourceGrowthRate = 25 params.xDim = 30 params.yDim = 30 params.numRun = numRun params.radius = i params.output = 'output_dec_'+str(numRun).zfill(5)+'.csv' print('run:',numRun+1,'of:',numRuns,'radius:',params.radius) decision.run(params) numRun += 1