def handle_predict(argv): hypothesis = None model = None with open(argv[3], "r") as f: # DONT DO THIS ITS INSECURE. IM INSANE model = f.readline().strip('\n') hypothesis = f.readline() f.close() hypothesis = literal_eval(hypothesis) tree = None tree = DecisionTree() tree.define_positive_class(lambda x: x.classification == 'en') tree.define_classes(processing.classes) tree.define_attributes(processing.attr_definitions) examples = process_file(argv[4], training=False) examples = tree.create_examples(examples) return tree.classify(examples, hypothesis)
def handle_train(argv): examples = process_file(argv[2], training=True) tree = None if argv[4] == "dt": tree = DecisionTree() else: tree = Adaboost() tree.define_positive_class(lambda x: x.classification == 'en') tree.define_classes(processing.classes) tree.define_attributes(processing.attr_definitions) tree.load_examples(examples) tree.generate(tree.examples) with open(argv[3], "w") as f: f.write(argv[4] + "\n") f.write(str(tree.tree)) f.close() tree.print()
def handle_train(argv, size=None, depth=None): examples = process_file(argv[2], training=True) tree = None tree = DecisionTree() tree.define_positive_class(lambda x: x.classification == 'en') tree.define_classes(processing.classes) tree.define_attributes(processing.attr_definitions) if size: tree.load_examples(examples[:size]) else: tree.load_examples(examples) if depth != None: tree.generate(tree.examples, depth) else: tree.generate(tree.examples) with open(argv[3], "w") as f: f.write("dt" + "\n") f.write(str(tree.tree)) f.close() tree.print()
def handle_predict(argv): hypothesis = None model = None with open(argv[2], "r") as f: model = f.readline().strip('\n') hypothesis = f.readline() f.close() hypothesis = literal_eval(hypothesis) tree = None if model == "dt": tree = DecisionTree() else: tree = Adaboost() tree.define_positive_class(lambda x: x.classification == 'en') tree.define_classes(processing.classes) tree.define_attributes(processing.attr_definitions) examples = process_file(argv[3], training=False) examples = tree.create_examples(examples) for classification in tree.classify(examples, hypothesis): print(classification)