示例#1
0
 def setUp(self) -> None:
     paths = extract_file_paths(self.PATH)
     self._dataset = MRBrainSSegmentationFactory.create(
         natural_sort(paths), None, modalities=Modality.T1, dataset_id=0)
     self._reconstructor = ImageReconstructor([256, 256, 192],
                                              [1, 32, 32, 32], [1, 8, 8, 8])
     transforms = Compose(
         [ToNumpyArray(),
          PadToPatchShape([1, 32, 32, 32], [1, 8, 8, 8])])
     self._full_image = transforms(self.FULL_IMAGE_PATH)
 def setUp(self) -> None:
     transforms = Compose(
         [ToNumpyArray(),
          PadToPatchShape((1, 32, 32, 32), (1, 8, 8, 8))])
     self._image = transforms(self.FULL_IMAGE_PATH)
     self._target = transforms(self.TARGET_PATH)
     patches = iSEGSliceDatasetFactory.get_patches([self._image],
                                                   [self._target],
                                                   (1, 32, 32, 32),
                                                   (1, 16, 16, 16))
     self._dataset = iSEGSliceDatasetFactory.create(
         [self._image], [self._target],
         patches,
         Modality.T1,
         0,
         transforms=[ToNDTensor()])
     self._reconstructor = ImageReconstructor([256, 192, 160],
                                              [1, 32, 32, 32],
                                              [1, 16, 16, 16],
                                              models=None,
                                              test_image=self._image)
示例#3
0
            step=dataset_configs["ABIDE"].step,
            test_patch_size=dataset_configs["ABIDE"].test_patch_size,
            test_step=dataset_configs["ABIDE"].test_step,
            data_augmentation_config=data_augmentation_config)
        train_datasets.append(ABIDE_train)
        valid_datasets.append(ABIDE_valid)
        test_datasets.append(ABIDE_test)
        reconstruction_datasets.append(ABIDE_reconstruction)

    if len(list(dataset_configs.keys())) == 2:
        normalized_reconstructor = ImageReconstructor(
            [
                iSEG_reconstruction._source_images[0],
                MRBrainS_reconstruction._source_images[0]
            ],
            patch_size=dataset_configs["iSEG"].test_patch_size,
            reconstructed_image_size=(1, 256, 256, 192),
            step=dataset_configs["iSEG"].test_step,
            models=[model_trainers[GENERATOR]],
            normalize=True,
            batch_size=5)
        segmentation_reconstructor = ImageReconstructor(
            [
                iSEG_reconstruction._source_images[0],
                MRBrainS_reconstruction._source_images[0]
            ],
            patch_size=dataset_configs["iSEG"].test_patch_size,
            reconstructed_image_size=(1, 256, 256, 192),
            step=dataset_configs["iSEG"].test_step,
            models=[model_trainers[GENERATOR], model_trainers[SEGMENTER]],
            normalize_and_segment=True,
示例#4
0
     max_subjects=dataset_configs["iSEG"].max_subjects,
     max_num_patches=dataset_configs["iSEG"].max_num_patches,
     augmentation_strategy=iSEG_augmentation_strategy,
     patch_size=dataset_configs["iSEG"].patch_size,
     step=dataset_configs["iSEG"].step,
     augmented_path=dataset_configs["iSEG"].path_augmented,
     test_patch_size=dataset_configs["iSEG"].test_patch_size,
     test_step=dataset_configs["iSEG"].test_step)
 train_datasets.append(iSEG_train)
 valid_datasets.append(iSEG_valid)
 test_datasets.append(iSEG_test)
 reconstruction_datasets.append(iSEG_reconstruction)
 normalized_reconstructors.append(ImageReconstructor(dataset_configs["iSEG"].reconstruction_size,
                                                     dataset_configs['iSEG'].test_patch_size,
                                                     dataset_configs["iSEG"].test_step,
                                                     [model_trainers[GENERATOR]],
                                                     normalize=True,
                                                     test_image=iSEG_reconstruction._augmented_images[
                                                         0] if iSEG_reconstruction._augmented_images is not None else
                                                     iSEG_reconstruction._source_images[0]))
 segmentation_reconstructors.append(
     ImageReconstructor(dataset_configs["iSEG"].reconstruction_size,
                        dataset_configs['iSEG'].test_patch_size,
                        dataset_configs["iSEG"].test_step,
                        [model_trainers[GENERATOR],
                         model_trainers[SEGMENTER]],
                        normalize_and_segment=True,
                        test_image=iSEG_reconstruction._augmented_images[
                            0] if iSEG_reconstruction._augmented_images is not None else
                        iSEG_reconstruction._source_images[0]))
 input_reconstructors.append(ImageReconstructor(dataset_configs["iSEG"].reconstruction_size,
                                                dataset_configs['iSEG'].test_patch_size,
示例#5
0
            patch_size=dataset_configs["iSEG"].patch_size,
            step=dataset_configs["iSEG"].step,
            augmented_path=dataset_configs["iSEG"].path_augmented,
            test_patch_size=dataset_configs["iSEG"].test_patch_size,
            test_step=dataset_configs["iSEG"].test_step)
        train_datasets.append(iSEG_train)
        valid_datasets.append(iSEG_valid)
        test_datasets.append(iSEG_test)
        reconstruction_datasets.append(iSEG_reconstruction)

        segmentation_reconstructors.append(
            ImageReconstructor(dataset_configs["iSEG"].reconstruction_size,
                               dataset_configs['iSEG'].test_patch_size,
                               dataset_configs["iSEG"].test_step,
                               [model_trainers[0]],
                               segment=True,
                               test_image=iSEG_augmentation_strategy(
                                   iSEG_reconstruction._source_images[0])
                               if iSEG_augmentation_strategy is not None else
                               iSEG_reconstruction._source_images[0]))

        input_reconstructors.append(
            ImageReconstructor(dataset_configs["iSEG"].reconstruction_size,
                               dataset_configs['iSEG'].test_patch_size,
                               dataset_configs["iSEG"].test_step,
                               test_image=iSEG_augmentation_strategy(
                                   iSEG_reconstruction._source_images[0])
                               if iSEG_augmentation_strategy is not None else
                               iSEG_reconstruction._source_images[0]))

        gt_reconstructors.append(