def load(cls, filename, clear_session=True): """ Loads parameters into model. Careful: this clears the whole TF session!! """ from deep_boltzmann.util import load_obj if clear_session: keras.backend.clear_session() D = load_obj(filename) prior = D['prior'] layerdicts = D['layers'] layers = [eval(d['type']).from_dict(d) for d in layerdicts] return InvNet(D['dim'], layers, prior=prior)
def load(cls, filename): """ Loads parameters into model. The resulting model is just a data container. """ from deep_boltzmann.util import load_obj D = load_obj(filename) umbrellas = [UmbrellaModel.from_dict(u) for u in D['umbrellas']] us = cls(None, None, None, None, len(umbrellas), umbrellas[0].k_umbrella, umbrellas[0].m_umbrella, umbrellas[-1].m_umbrella, forward_backward=D['forward_backward']) us.umbrellas = umbrellas if 'rc_discretization' in D: us.rc_discretization = D['rc_discretization'] us.rc_free_energies = D['rc_free_energies'] return us
mm_cyc9 = MM(toppar_cyc9, align=0.0) top_cyc9 = toppar_cyc9.mdtraj_topology() rotamer_mapper = RotamerMapper(9) # get C torsions Ctor = [] for i, tor in enumerate(toppar_cyc9.torsion_indices): is_Ctor = True for j in tor: if not toppar_cyc9.atom_names[j].startswith('C'): is_Ctor = False if is_Ctor: Ctor.append(i) # load data remd_dict = load_obj('../local_data/out/hydrocarbon_cyc9/remd_data.pkl') traj = mdtraj.Trajectory( remd_dict['trajs'][0].reshape(remd_dict['trajs'][0].shape[0], toppar_cyc9.natoms, 3), top_cyc9) traj = traj[10000:14000] traj = traj.superpose(traj[0]) xtrain = traj.xyz.reshape( (traj.xyz.shape[0], traj.xyz.shape[1] * traj.xyz.shape[2])) network_resample = create_RealNVPNet(mm_cyc9, nlayers=4, nl_activation='tanh') resample(mm_cyc9, Ctor, network_resample, xtrain, traj[0], epochsML=300,