agent_params['agent_act_level'] = params['act_level'] agent_params['experience_replay_pool_size'] = params['experience_replay_pool_size'] agent_params['dqn_hidden_size'] = params['dqn_hidden_size'] agent_params['batch_size'] = params['batch_size'] agent_params['gamma'] = params['gamma'] agent_params['predict_mode'] = params['predict_mode'] agent_params['trained_model_path'] = params['trained_model_path'] agent_params['warm_start'] = params['warm_start'] agent_params['cmd_input_mode'] = params['cmd_input_mode'] if agt == 0: agent = AgentCmd(course_kb, act_set, slot_set, agent_params) elif agt == 1: agent = InformAgent(course_kb, act_set, slot_set, agent_params) elif agt == 2: agent = RequestAllAgent(course_kb, act_set, slot_set, agent_params) elif agt == 3: agent = RandomAgent(course_kb, act_set, slot_set, agent_params) elif agt == 4: agent = EchoAgent(course_kb, act_set, slot_set, agent_params) elif agt == 5: agent = RequestBasicsAgent(course_kb, act_set, slot_set, agent_params) elif agt == 9: agent = AgentDQN(course_kb, act_set, slot_set, agent_params) ################################################################################ # Add your agent here ################################################################################ else:
agent_params['agent_act_level'] = params['act_level'] agent_params['experience_replay_pool_size'] = params[ 'experience_replay_pool_size'] agent_params['dqn_hidden_size'] = params['dqn_hidden_size'] agent_params['batch_size'] = params['batch_size'] agent_params['gamma'] = params['gamma'] agent_params['predict_mode'] = params['predict_mode'] agent_params['trained_model_path'] = params['trained_model_path'] agent_params['warm_start'] = params['warm_start'] agent_params['cmd_input_mode'] = params['cmd_input_mode'] if agt == 0: agent = AgentCmd(kb, act_set, slot_set, agent_params) elif agt == 1: agent = InformAgent(kb, act_set, slot_set, agent_params) elif agt == 2: agent = RequestAllAgent(kb, act_set, slot_set, agent_params) elif agt == 3: agent = RandomAgent(kb, act_set, slot_set, agent_params) elif agt == 4: #agent = EchoAgent(kb, act_set, slot_set, agent_params) agent = RequestInformSlotAgent(kb, act_set, slot_set, agent_params, movie_request_slots, movie_inform_slots) elif agt == 5: # movie request rule agent agent = RequestBasicsAgent(kb, act_set, slot_set, agent_params, movie_request_slots) elif agt == 6: # restaurant request rule agent agent = RequestBasicsAgent(kb, act_set, slot_set, agent_params, restaurant_request_slots) elif agt == 7: # taxi request agent
agent_params['agent_act_level'] = params['act_level'] agent_params['experience_replay_pool_size'] = params[ 'experience_replay_pool_size'] agent_params['dqn_hidden_size'] = params['dqn_hidden_size'] agent_params['batch_size'] = params['batch_size'] agent_params['gamma'] = params['gamma'] agent_params['predict_mode'] = params['predict_mode'] agent_params['trained_model_path'] = params['trained_model_path'] agent_params['warm_start'] = params['warm_start'] agent_params['cmd_input_mode'] = params['cmd_input_mode'] if agt == 0: agent = AgentCmd(movie_kb, act_set, slot_set, agent_params) elif agt == 1: agent = InformAgent(movie_kb, act_set, slot_set, agent_params) elif agt == 2: agent = RequestAllAgent(movie_kb, act_set, slot_set, agent_params) elif agt == 3: agent = RandomAgent(movie_kb, act_set, slot_set, agent_params) elif agt == 4: agent = EchoAgent(movie_kb, act_set, slot_set, agent_params) elif agt == 5: agent = RequestBasicsAgent(movie_kb, act_set, slot_set, agent_params) elif agt == 9: agent = AgentDQN(movie_kb, act_set, slot_set, agent_params) ################################################################################ # Add your agent here ################################################################################ else: