generate_dataset.save_images() generate_dataset.save_images('finaltest') generate_dataset.save_images('val') if args.hyperparams: epochs = args.epochs lr = args.learning_rate batchsize = args.batch_size else: epochs = 100 lr = 0.005 batchsize = 128 if args.train: net = Deep_Emotion() net.to(device) print("Model archticture: ", net) traincsv_file = args.data + '/' + 'train.csv' validationcsv_file = args.data + '/' + 'val.csv' train_img_dir = args.data + '/' + 'train/' validation_img_dir = args.data + '/' + 'val/' transformation = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, ), (0.5, ))]) train_dataset = Plain_Dataset(csv_file=traincsv_file, img_dir=train_img_dir, datatype='train', transform=transformation) validation_dataset = Plain_Dataset(csv_file=validationcsv_file, img_dir=validation_img_dir,
# batchsize = 128 # if args.train: # net = Deep_Emotion() # net.to(device) # print("Model archticture: ", net) # traincsv_file = args.data+'/'+'train.csv' # validationcsv_file = args.data+'/'+'val.csv' # train_img_dir = args.data+'/'+'train/' # validation_img_dir = args.data+'/'+'val/' epochs = 100 lr = 0.005 # Learning rate batchsize = 128 net = Deep_Emotion() ## CREATING THE MODEL BY CALLING DEEPMOTION.PY net.to(device) ## MOVING IT TO GPU / CPU print("Model archticture: ", net) traincsv_file = 'data' + '/' + 'train.csv' validationcsv_file = 'data' + '/' + 'val.csv' train_img_dir = 'data' + '/' + 'train/' validation_img_dir = 'data' + '/' + 'val/' transformation = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.5, ), (0.5, ))]) train_dataset = Plain_Dataset(csv_file=traincsv_file, img_dir=train_img_dir, datatype='train', transform=transformation) validation_dataset = Plain_Dataset(csv_file=validationcsv_file, img_dir=validation_img_dir,