示例#1
0
  def build_graph(self):
    """
    Building graph structures:
    """
    self.m1_features = Feature(shape=(None, self.n_features))
    self.m2_features = Feature(shape=(None, self.n_features))
    prev_layer1 = self.m1_features
    prev_layer2 = self.m2_features
    for layer_size in self.layer_sizes:
      prev_layer1 = Dense(
          out_channels=layer_size,
          in_layers=[prev_layer1],
          activation_fn=tf.nn.relu)
      prev_layer2 = prev_layer1.shared([prev_layer2])
      if self.dropout > 0.0:
        prev_layer1 = Dropout(self.dropout, in_layers=prev_layer1)
        prev_layer2 = Dropout(self.dropout, in_layers=prev_layer2)

    readout_m1 = Dense(
        out_channels=1, in_layers=[prev_layer1], activation_fn=None)
    readout_m2 = readout_m1.shared([prev_layer2])
    self.add_output(Sigmoid(readout_m1) * 4 + 1)
    self.add_output(Sigmoid(readout_m2) * 4 + 1)

    self.difference = readout_m1 - readout_m2
    label = Label(shape=(None, 1))
    loss = HingeLoss(in_layers=[label, self.difference])
    self.my_task_weights = Weights(shape=(None, 1))
    loss = WeightedError(in_layers=[loss, self.my_task_weights])
    self.set_loss(loss)
示例#2
0
 def test_dense(self):
   """Test that Dense can be invoked."""
   in_dim = 2
   out_dim = 3
   batch_size = 10
   in_tensor = np.random.rand(batch_size, in_dim)
   with self.session() as sess:
     in_tensor = tf.convert_to_tensor(in_tensor, dtype=tf.float32)
     out_tensor = Dense(out_dim)(in_tensor)
     sess.run(tf.global_variables_initializer())
     out_tensor = out_tensor.eval()
     assert out_tensor.shape == (batch_size, out_dim)
示例#3
0
  def test_shared_layer(self):
    n_data_points = 20
    n_features = 2

    X = np.random.rand(n_data_points, n_features)
    y1 = np.array([[0, 1] for x in range(n_data_points)])
    X = NumpyDataset(X)
    ys = [NumpyDataset(y1)]

    databag = Databag()

    features = Feature(shape=(None, n_features))
    databag.add_dataset(features, X)

    outputs = []

    label = Label(shape=(None, 2))
    dense1 = Dense(out_channels=2, in_layers=[features])
    dense2 = dense1.shared(in_layers=[features])
    output1 = SoftMax(in_layers=[dense1])
    output2 = SoftMax(in_layers=[dense2])
    smce = SoftMaxCrossEntropy(in_layers=[label, dense1])

    outputs.append(output1)
    outputs.append(output2)
    databag.add_dataset(label, ys[0])

    total_loss = ReduceMean(in_layers=[smce])

    tg = dc.models.TensorGraph(learning_rate=0.01)
    for output in outputs:
      tg.add_output(output)
    tg.set_loss(total_loss)

    tg.fit_generator(
        databag.iterbatches(
            epochs=1, batch_size=tg.batch_size, pad_batches=True))
    prediction = tg.predict_on_generator(databag.iterbatches())
    assert_true(np.all(np.isclose(prediction[0], prediction[1], atol=0.01)))
    def test_multi_task_classifier(self):
        n_data_points = 20
        n_features = 2

        X = np.random.rand(n_data_points, n_features)
        y1 = np.array([[0, 1] for x in range(n_data_points)])
        y2 = np.array([[1, 0] for x in range(n_data_points)])
        X = NumpyDataset(X)
        ys = [NumpyDataset(y1), NumpyDataset(y2)]

        databag = Databag()

        features = Feature(shape=(None, n_features))
        databag.add_dataset(features, X)

        outputs = []
        entropies = []
        for i in range(2):
            label = Label(shape=(None, 2))
            dense = Dense(out_channels=2, in_layers=[features])
            output = SoftMax(in_layers=[dense])
            smce = SoftMaxCrossEntropy(in_layers=[label, dense])

            entropies.append(smce)
            outputs.append(output)
            databag.add_dataset(label, ys[i])

        total_loss = ReduceMean(in_layers=entropies)

        tg = dc.models.TensorGraph(learning_rate=0.01)
        for output in outputs:
            tg.add_output(output)
        tg.set_loss(total_loss)

        tg.fit_generator(
            databag.iterbatches(epochs=1000,
                                batch_size=tg.batch_size,
                                pad_batches=True))
        predictions = tg.predict_on_generator(databag.iterbatches())
        for i in range(2):
            y_real = ys[i].X
            y_pred = predictions[i]
            assert_true(np.all(np.isclose(y_pred, y_real, atol=0.6)))
示例#5
0
    def build_graph(self):

        self.atom_numbers = Feature(shape=(None, self.max_atoms),
                                    dtype=tf.int32)
        self.atom_flags = Feature(shape=(None, self.max_atoms, self.max_atoms))
        self.atom_feats = Feature(shape=(None, self.max_atoms, 4))

        previous_layer = ANIFeat(in_layers=self.atom_feats,
                                 max_atoms=self.max_atoms)

        self.featurized = previous_layer

        Hiddens = []
        for n_hidden in self.layer_structures:
            Hidden = AtomicDifferentiatedDense(
                self.max_atoms,
                n_hidden,
                self.atom_number_cases,
                activation='tanh',
                in_layers=[previous_layer, self.atom_numbers])
            Hiddens.append(Hidden)
            previous_layer = Hiddens[-1]

        costs = []
        self.labels_fd = []
        for task in range(self.n_tasks):
            regression = Dense(out_channels=1,
                               activation_fn=None,
                               in_layers=[Hiddens[-1]])
            output = BPGather(self.max_atoms,
                              in_layers=[regression, self.atom_flags])
            self.add_output(output)

            label = Label(shape=(None, 1))
            self.labels_fd.append(label)
            cost = L2Loss(in_layers=[label, output])
            costs.append(cost)

        all_cost = Stack(in_layers=costs, axis=1)
        self.weights = Weights(shape=(None, self.n_tasks))
        loss = WeightedError(in_layers=[all_cost, self.weights])
        self.set_loss(loss)
示例#6
0
    def test_get_layer_variable_values_eager(self):
        """Tests to get variable values associated with a layer in eager mode"""

        with context.eager_mode():
            # Test for correct value return (eager mode)
            tg = dc.models.TensorGraph()
            var = Variable([10.0, 12.0])
            tg.add_output(var)
            expected = [10.0, 12.0]
            obtained = tg.get_layer_variable_values(var)[0]
            np.testing.assert_array_equal(expected, obtained)

            # Test for shape (eager mode)
            tg = dc.models.TensorGraph()
            input_tensor = Input(shape=(10, 100))
            output = Dense(out_channels=20, in_layers=[input_tensor])
            tg.add_output(output)
            expected_shape = (100, 20)
            obtained_shape = tg.get_layer_variable_values(output)[0].shape
            assert expected_shape == obtained_shape
示例#7
0
  def test_multi_task_regressor(self):
    n_data_points = 20
    n_features = 2

    X = np.random.rand(n_data_points, n_features)
    y1 = np.expand_dims(np.array([0.5 for x in range(n_data_points)]), axis=-1)
    y2 = np.expand_dims(np.array([-0.5 for x in range(n_data_points)]), axis=-1)
    X = NumpyDataset(X)
    ys = [NumpyDataset(y1), NumpyDataset(y2)]

    databag = Databag()

    features = Feature(shape=(None, n_features))
    databag.add_dataset(features, X)

    outputs = []
    losses = []
    for i in range(2):
      label = Label(shape=(None, 1))
      dense = Dense(out_channels=1, in_layers=[features])
      loss = ReduceSquareDifference(in_layers=[dense, label])

      outputs.append(dense)
      losses.append(loss)
      databag.add_dataset(label, ys[i])

    total_loss = ReduceMean(in_layers=losses)

    tg = dc.models.TensorGraph(learning_rate=0.01)
    for output in outputs:
      tg.add_output(output)
    tg.set_loss(total_loss)

    tg.fit_generator(
        databag.iterbatches(
            epochs=1000, batch_size=tg.batch_size, pad_batches=True))
    predictions = tg.predict_on_generator(databag.iterbatches())
    for i in range(2):
      y_real = ys[i].X
      y_pred = predictions[i]
      assert_true(np.all(np.isclose(y_pred, y_real, atol=1.5)))
    def test_compute_model_performance_multitask_classifier(self):
        n_data_points = 20
        n_features = 1
        n_tasks = 2
        n_classes = 2

        X = np.ones(shape=(n_data_points // 2, n_features)) * -1
        X1 = np.ones(shape=(n_data_points // 2, n_features))
        X = np.concatenate((X, X1))
        class_1 = np.array([[0.0, 1.0] for x in range(int(n_data_points / 2))])
        class_0 = np.array([[1.0, 0.0] for x in range(int(n_data_points / 2))])
        y1 = np.concatenate((class_0, class_1))
        y2 = np.concatenate((class_1, class_0))
        y = np.stack([y1, y2], axis=1)
        dataset = NumpyDataset(X, y)

        features = Feature(shape=(None, n_features))
        label = Label(shape=(None, n_tasks, n_classes))
        dense = Dense(out_channels=n_tasks * n_classes, in_layers=[features])
        logits = Reshape(shape=(None, n_tasks, n_classes), in_layers=dense)
        output = SoftMax(in_layers=[logits])
        smce = SoftMaxCrossEntropy(in_layers=[label, logits])
        total_loss = ReduceMean(in_layers=smce)

        tg = dc.models.TensorGraph(learning_rate=0.01,
                                   batch_size=n_data_points)
        tg.add_output(output)
        tg.set_loss(total_loss)

        tg.fit(dataset, nb_epoch=1000)
        metric = dc.metrics.Metric(dc.metrics.roc_auc_score,
                                   np.mean,
                                   mode="classification")

        scores = tg.evaluate_generator(tg.default_generator(dataset), [metric],
                                       labels=[label],
                                       per_task_metrics=True)
        scores = list(scores[1].values())
        # Loosening atol to see if tests stop failing sporadically
        assert_true(np.all(np.isclose(scores, [1.0, 1.0], atol=0.50)))
示例#9
0
 def test_copy_layers(self):
   """Test copying layers."""
   tg = dc.models.TensorGraph()
   features = Feature(shape=(None, 10))
   dense = Dense(
       10, in_layers=features, biases_initializer=tf.random_normal_initializer)
   constant = Constant(10.0)
   output = dense + constant
   tg.add_output(output)
   tg.set_loss(output)
   tg.fit_generator([])
   replacements = {constant: Constant(20.0)}
   copy = output.copy(replacements, tg)
   assert isinstance(copy, Add)
   assert isinstance(copy.in_layers[0], Dense)
   assert isinstance(copy.in_layers[0].in_layers[0], Feature)
   assert copy.in_layers[1] == replacements[constant]
   variables = tg.get_layer_variables(dense)
   with tg._get_tf("Graph").as_default():
     values = tg.session.run(variables)
   for v1, v2 in zip(values, copy.in_layers[0].variable_values):
     assert np.array_equal(v1, v2)
示例#10
0
    def test_save_load(self):
        n_data_points = 20
        n_features = 2
        X = np.random.rand(n_data_points, n_features)
        y = [[0, 1] for x in range(n_data_points)]
        dataset = NumpyDataset(X, y)
        features = Feature(shape=(None, n_features))
        dense = Dense(out_channels=2, in_layers=[features])
        output = SoftMax(in_layers=[dense])
        label = Label(shape=(None, 2))
        smce = SoftMaxCrossEntropy(in_layers=[label, dense])
        loss = ReduceMean(in_layers=[smce])
        tg = dc.models.TensorGraph(learning_rate=0.01)
        tg.add_output(output)
        tg.set_loss(loss)
        tg.fit(dataset, nb_epoch=1)
        prediction = np.squeeze(tg.predict_on_batch(X))
        tg.save()

        tg1 = TensorGraph.load_from_dir(tg.model_dir)
        prediction2 = np.squeeze(tg1.predict_on_batch(X))
        assert_true(np.all(np.isclose(prediction, prediction2, atol=0.01)))
示例#11
0
    def test_sequential(self):
        """Test creating an Estimator from a Sequential model."""
        n_samples = 20
        n_features = 2

        # Create a dataset and an input function for processing it.

        X = np.random.rand(n_samples, n_features)
        y = [0.5 for x in range(n_samples)]
        dataset = dc.data.NumpyDataset(X, y)

        def input_fn(epochs):
            x, y, weights = dataset.make_iterator(batch_size=n_samples,
                                                  epochs=epochs).get_next()
            return {'x': x}, y

        # Create the model.

        model = dc.models.Sequential(loss="mse", learning_rate=0.01)
        model.add(Dense(out_channels=1))

        # Create an estimator from it.

        x_col = tf.feature_column.numeric_column('x', shape=(n_features, ))
        metrics = {'error': tf.metrics.mean_absolute_error}
        estimator = model.make_estimator(feature_columns=[x_col],
                                         metrics=metrics)

        # Train the model.

        estimator.train(input_fn=lambda: input_fn(1000))

        # Evaluate the model.

        results = estimator.evaluate(input_fn=lambda: input_fn(1))
        assert results['loss'] < 1e-2
        assert results['error'] < 0.1
示例#12
0
 def test_copy_layers_shared(self):
   """Test copying layers with shared variables."""
   tg = dc.models.TensorGraph()
   features = Feature(shape=(None, 10))
   dense = Dense(
       10, in_layers=features, biases_initializer=tf.random_normal_initializer)
   constant = Constant(10.0)
   output = dense + constant
   tg.add_output(output)
   tg.set_loss(output)
   replacements = {features: features, constant: Constant(20.0)}
   copy = output.copy(replacements, shared=True)
   tg.add_output(copy)
   assert isinstance(copy, Add)
   assert isinstance(copy.in_layers[0], Dense)
   assert isinstance(copy.in_layers[0].in_layers[0], Feature)
   assert copy.in_layers[1] == replacements[constant]
   variables1 = tg.get_layer_variables(dense)
   variables2 = tg.get_layer_variables(copy.in_layers[0])
   for v1, v2, in zip(variables1, variables2):
     assert v1 == v2
   feed_dict = {features: np.random.random((5, 10))}
   v1, v2 = tg.predict_on_generator([feed_dict], outputs=[output, copy])
   assert_true(np.all(np.isclose(v1 + 10, v2)))
示例#13
0
    def build_graph(self):
        """Building graph structures:
                Features => WeaveLayer => WeaveLayer => Dense => WeaveGather => Classification or Regression
                """
        self.atom_features = Feature(shape=(None, self.n_atom_feat))
        self.pair_features = Feature(shape=(None, self.n_pair_feat))
        self.pair_split = Feature(shape=(None, ), dtype=tf.int32)
        self.atom_split = Feature(shape=(None, ), dtype=tf.int32)
        self.atom_to_pair = Feature(shape=(None, 2), dtype=tf.int32)
        weave_layer1A, weave_layer1P = WeaveLayerFactory(
            n_atom_input_feat=self.n_atom_feat,
            n_pair_input_feat=self.n_pair_feat,
            n_atom_output_feat=self.n_hidden,
            n_pair_output_feat=self.n_hidden,
            in_layers=[
                self.atom_features, self.pair_features, self.pair_split,
                self.atom_to_pair
            ])
        weave_layer2A, weave_layer2P = WeaveLayerFactory(
            n_atom_input_feat=self.n_hidden,
            n_pair_input_feat=self.n_hidden,
            n_atom_output_feat=self.n_hidden,
            n_pair_output_feat=self.n_hidden,
            update_pair=False,
            in_layers=[
                weave_layer1A, weave_layer1P, self.pair_split,
                self.atom_to_pair
            ])
        dense1 = Dense(out_channels=self.n_graph_feat,
                       activation_fn=tf.nn.tanh,
                       in_layers=weave_layer2A)
        batch_norm1 = BatchNorm(epsilon=1e-5, in_layers=[dense1])
        weave_gather = WeaveGather(self.batch_size,
                                   n_input=self.n_graph_feat,
                                   gaussian_expand=True,
                                   in_layers=[batch_norm1, self.atom_split])

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        if self.mode == 'classification':
            n_classes = self.n_classes
            labels = Label(shape=(None, n_tasks, n_classes))
            logits = Reshape(shape=(None, n_tasks, n_classes),
                             in_layers=[
                                 Dense(in_layers=weave_gather,
                                       out_channels=n_tasks * n_classes)
                             ])
            output = SoftMax(logits)
            self.add_output(output)
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
            weighted_loss = WeightedError(in_layers=[loss, weights])
            self.set_loss(weighted_loss)
        else:
            labels = Label(shape=(None, n_tasks))
            output = Reshape(shape=(None, n_tasks),
                             in_layers=[
                                 Dense(in_layers=weave_gather,
                                       out_channels=n_tasks)
                             ])
            self.add_output(output)
            weighted_loss = ReduceSum(
                L2Loss(in_layers=[labels, output, weights]))
            self.set_loss(weighted_loss)
示例#14
0
    def __init__(self,
                 n_tasks,
                 n_features,
                 layer_sizes=[1000],
                 weight_init_stddevs=[0.02],
                 bias_init_consts=[1.0],
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=[0.5],
                 n_classes=2,
                 **kwargs):
        """Create a TensorGraphMultiTaskClassifier.

    In addition to the following arguments, this class also accepts all the keywork arguments
    from TensorGraph.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of this list determines the number of layers.
    weight_init_stddevs: list
      the standard deviation of the distribution to use for weight initialization of each layer.  The length
      of this list should equal len(layer_sizes).
    bias_init_consts: list
      the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes).
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
    n_classes: int
      the number of classes
    """
        super(TensorGraphMultiTaskClassifier,
              self).__init__(mode='classification', **kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        self.n_classes = n_classes

        # Add the input features.

        mol_features = Feature(shape=(None, n_features))
        prev_layer = mol_features

        # Add the dense layers

        for size, weight_stddev, bias_const, dropout in zip(
                layer_sizes, weight_init_stddevs, bias_init_consts, dropouts):
            layer = Dense(in_layers=[prev_layer],
                          out_channels=size,
                          activation_fn=tf.nn.relu,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_stddev),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=bias_const))
            if dropout > 0.0:
                layer = Dropout(dropout, in_layers=[layer])
            prev_layer = layer

        # Compute the loss function for each label.

        output = Reshape(shape=(-1, n_tasks, n_classes),
                         in_layers=[
                             Dense(in_layers=[prev_layer],
                                   out_channels=n_tasks * n_classes)
                         ])
        self.add_output(output)
        labels = Label(shape=(None, n_tasks, n_classes))
        weights = Weights(shape=(None, n_tasks))
        loss = SoftMaxCrossEntropy(in_layers=[labels, output])
        weighted_loss = WeightedError(in_layers=[loss, weights])
        if weight_decay_penalty != 0.0:
            weighted_loss = WeightDecay(weight_decay_penalty,
                                        weight_decay_penalty_type,
                                        in_layers=[weighted_loss])
        self.set_loss(weighted_loss)
示例#15
0
    def build_graph(self):
        """
    Building graph structures:
    """
        self.atom_features = Feature(shape=(None, self.number_atom_features))
        self.degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
        self.membership = Feature(shape=(None, ), dtype=tf.int32)

        self.deg_adjs = []
        for i in range(0, 10 + 1):
            deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
            self.deg_adjs.append(deg_adj)
        in_layer = self.atom_features
        for layer_size, dropout in zip(self.graph_conv_layers, self.dropout):
            gc1_in = [in_layer, self.degree_slice, self.membership
                      ] + self.deg_adjs
            gc1 = GraphConv(layer_size,
                            activation_fn=tf.nn.relu,
                            in_layers=gc1_in)
            batch_norm1 = BatchNorm(in_layers=[gc1])
            if dropout > 0.0:
                batch_norm1 = Dropout(dropout, in_layers=batch_norm1)
            gp_in = [batch_norm1, self.degree_slice, self.membership
                     ] + self.deg_adjs
            in_layer = GraphPool(in_layers=gp_in)
        dense = Dense(out_channels=self.dense_layer_size,
                      activation_fn=tf.nn.relu,
                      in_layers=[in_layer])
        batch_norm3 = BatchNorm(in_layers=[dense])
        if self.dropout[-1] > 0.0:
            batch_norm3 = Dropout(self.dropout[-1], in_layers=batch_norm3)
        readout = GraphGather(
            batch_size=self.batch_size,
            activation_fn=tf.nn.tanh,
            in_layers=[batch_norm3, self.degree_slice, self.membership] +
            self.deg_adjs)

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        if self.mode == 'classification':
            n_classes = self.n_classes
            labels = Label(shape=(None, n_tasks, n_classes))
            logits = Reshape(shape=(None, n_tasks, n_classes),
                             in_layers=[
                                 Dense(in_layers=readout,
                                       out_channels=n_tasks * n_classes)
                             ])
            logits = TrimGraphOutput([logits, weights])
            output = SoftMax(logits)
            self.add_output(output)
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
            weighted_loss = WeightedError(in_layers=[loss, weights])
            self.set_loss(weighted_loss)
        else:
            labels = Label(shape=(None, n_tasks))
            output = Reshape(
                shape=(None, n_tasks),
                in_layers=[Dense(in_layers=readout, out_channels=n_tasks)])
            output = TrimGraphOutput([output, weights])
            self.add_output(output)
            if self.uncertainty:
                log_var = Reshape(
                    shape=(None, n_tasks),
                    in_layers=[Dense(in_layers=readout, out_channels=n_tasks)])
                log_var = TrimGraphOutput([log_var, weights])
                var = Exp(log_var)
                self.add_variance(var)
                diff = labels - output
                weighted_loss = weights * (diff * diff / var + log_var)
                weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1]))
            else:
                weighted_loss = ReduceSum(
                    L2Loss(in_layers=[labels, output, weights]))
            self.set_loss(weighted_loss)
示例#16
0
    def build_graph(self):
        # Build placeholders
        self.atom_features = Feature(shape=(None, self.n_atom_feat))
        self.pair_features = Feature(shape=(None, self.n_pair_feat))
        self.atom_split = Feature(shape=(None, ), dtype=tf.int32)
        self.atom_to_pair = Feature(shape=(None, 2), dtype=tf.int32)

        message_passing = MessagePassing(self.T,
                                         message_fn='enn',
                                         update_fn='gru',
                                         n_hidden=self.n_hidden,
                                         in_layers=[
                                             self.atom_features,
                                             self.pair_features,
                                             self.atom_to_pair
                                         ])

        atom_embeddings = Dense(self.n_hidden, in_layers=[message_passing])

        mol_embeddings = SetGather(
            self.M,
            self.batch_size,
            n_hidden=self.n_hidden,
            in_layers=[atom_embeddings, self.atom_split])

        dense1 = Dense(out_channels=2 * self.n_hidden,
                       activation_fn=tf.nn.relu,
                       in_layers=[mol_embeddings])

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        if self.mode == 'classification':
            n_classes = self.n_classes
            labels = Label(shape=(None, n_tasks, n_classes))
            logits = Reshape(shape=(None, n_tasks, n_classes),
                             in_layers=[
                                 Dense(in_layers=dense1,
                                       out_channels=n_tasks * n_classes)
                             ])
            logits = TrimGraphOutput([logits, weights])
            output = SoftMax(logits)
            self.add_output(output)
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
            weighted_loss = WeightedError(in_layers=[loss, weights])
            self.set_loss(weighted_loss)
        else:
            labels = Label(shape=(None, n_tasks))
            output = Reshape(
                shape=(None, n_tasks),
                in_layers=[Dense(in_layers=dense1, out_channels=n_tasks)])
            output = TrimGraphOutput([output, weights])
            self.add_output(output)
            if self.uncertainty:
                log_var = Reshape(
                    shape=(None, n_tasks),
                    in_layers=[Dense(in_layers=dense1, out_channels=n_tasks)])
                log_var = TrimGraphOutput([log_var, weights])
                var = Exp(log_var)
                self.add_variance(var)
                diff = labels - output
                weighted_loss = weights * (diff * diff / var + log_var)
                weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1]))
            else:
                weighted_loss = ReduceSum(
                    L2Loss(in_layers=[labels, output, weights]))
            self.set_loss(weighted_loss)
示例#17
0
文件: mnist.py 项目: vcsrc/deepchem
                                         ksize=[1, 2, 2, 1],
                                         strides=[1, 2, 2, 1],
                                         padding='SAME')
        return self.out_tensor


conv2d_1 = Conv2d(num_outputs=32)
tg.add_layer(conv2d_1, parents=[make_image])

conv2d_2 = Conv2d(num_outputs=64)
tg.add_layer(conv2d_2, parents=[conv2d_1])

flatten = Flatten()
tg.add_layer(flatten, parents=[conv2d_2])

dense1 = Dense(out_channels=1024, activation_fn=tf.nn.relu)
tg.add_layer(dense1, parents=[flatten])

dense2 = Dense(out_channels=10)
tg.add_layer(dense2, parents=[dense1])

label = Input(shape=(None, 10))
tg.add_label(label)

smce = SoftMaxCrossEntropy()
tg.add_layer(smce, parents=[label, dense2])

loss = ReduceMean()
tg.add_layer(loss, parents=[smce])
tg.set_loss(loss)
示例#18
0
    def build_graph(self):
        """Building graph structures:
                Features => DAGLayer => DAGGather => Classification or Regression
                """
        self.atom_features = Feature(shape=(None, self.n_atom_feat))
        self.parents = Feature(shape=(None, self.max_atoms, self.max_atoms),
                               dtype=tf.int32)
        self.calculation_orders = Feature(shape=(None, self.max_atoms),
                                          dtype=tf.int32)
        self.calculation_masks = Feature(shape=(None, self.max_atoms),
                                         dtype=tf.bool)
        self.membership = Feature(shape=(None, ), dtype=tf.int32)
        self.n_atoms = Feature(shape=(), dtype=tf.int32)
        dag_layer1 = DAGLayer(n_graph_feat=self.n_graph_feat,
                              n_atom_feat=self.n_atom_feat,
                              max_atoms=self.max_atoms,
                              layer_sizes=self.layer_sizes,
                              dropout=self.dropout,
                              batch_size=self.batch_size,
                              in_layers=[
                                  self.atom_features, self.parents,
                                  self.calculation_orders,
                                  self.calculation_masks, self.n_atoms
                              ])
        dag_gather = DAGGather(n_graph_feat=self.n_graph_feat,
                               n_outputs=self.n_outputs,
                               max_atoms=self.max_atoms,
                               layer_sizes=self.layer_sizes_gather,
                               dropout=self.dropout,
                               in_layers=[dag_layer1, self.membership])

        n_tasks = self.n_tasks
        weights = Weights(shape=(None, n_tasks))
        if self.mode == 'classification':
            n_classes = self.n_classes
            labels = Label(shape=(None, n_tasks, n_classes))
            logits = Reshape(shape=(None, n_tasks, n_classes),
                             in_layers=[
                                 Dense(in_layers=dag_gather,
                                       out_channels=n_tasks * n_classes)
                             ])
            output = SoftMax(logits)
            self.add_output(output)
            loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
            weighted_loss = WeightedError(in_layers=[loss, weights])
            self.set_loss(weighted_loss)
        else:
            labels = Label(shape=(None, n_tasks))
            output = Reshape(
                shape=(None, n_tasks),
                in_layers=[Dense(in_layers=dag_gather, out_channels=n_tasks)])
            self.add_output(output)
            if self.uncertainty:
                log_var = Reshape(shape=(None, n_tasks),
                                  in_layers=[
                                      Dense(in_layers=dag_gather,
                                            out_channels=n_tasks)
                                  ])
                var = Exp(log_var)
                self.add_variance(var)
                diff = labels - output
                weighted_loss = weights * (diff * diff / var + log_var)
                weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1]))
            else:
                weighted_loss = ReduceSum(
                    L2Loss(in_layers=[labels, output, weights]))
            self.set_loss(weighted_loss)
示例#19
0
文件: fcnet.py 项目: zhshLee/deepchem
    def __init__(self,
                 n_tasks,
                 n_features,
                 layer_sizes=[1000],
                 weight_init_stddevs=0.02,
                 bias_init_consts=1.0,
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=0.5,
                 activation_fns=tf.nn.relu,
                 uncertainty=False,
                 **kwargs):
        """Create a MultitaskRegressor.

    In addition to the following arguments, this class also accepts all the keywork arguments
    from TensorGraph.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of this list determines the number of layers.
    weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight initialization of each layer.  The length
      of this list should equal len(layer_sizes)+1.  The final element corresponds to the output layer.
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    bias_init_consts: list or float
      the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes)+1.
      The final element corresponds to the output layer.  Alternatively this may be a single value instead of a list,
      in which case the same value is used for every layer.
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list or float
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    activation_fns: list or object
      the Tensorflow activation function to apply to each layer.  The length of this list should equal
      len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
      same value is used for every layer.
    uncertainty: bool
      if True, include extra outputs and loss terms to enable the uncertainty
      in outputs to be predicted
    """
        super(MultitaskRegressor, self).__init__(**kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        n_layers = len(layer_sizes)
        if not isinstance(weight_init_stddevs, collections.Sequence):
            weight_init_stddevs = [weight_init_stddevs] * (n_layers + 1)
        if not isinstance(bias_init_consts, collections.Sequence):
            bias_init_consts = [bias_init_consts] * (n_layers + 1)
        if not isinstance(dropouts, collections.Sequence):
            dropouts = [dropouts] * n_layers
        if not isinstance(activation_fns, collections.Sequence):
            activation_fns = [activation_fns] * n_layers
        if uncertainty:
            if any(d == 0.0 for d in dropouts):
                raise ValueError(
                    'Dropout must be included in every layer to predict uncertainty'
                )

        # Add the input features.

        mol_features = Feature(shape=(None, n_features))
        prev_layer = mol_features

        # Add the dense layers

        for size, weight_stddev, bias_const, dropout, activation_fn in zip(
                layer_sizes, weight_init_stddevs, bias_init_consts, dropouts,
                activation_fns):
            layer = Dense(in_layers=[prev_layer],
                          out_channels=size,
                          activation_fn=activation_fn,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_stddev),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=bias_const))
            if dropout > 0.0:
                layer = Dropout(dropout, in_layers=[layer])
            prev_layer = layer
        self.neural_fingerprint = prev_layer

        # Compute the loss function for each label.

        output = Reshape(shape=(-1, n_tasks, 1),
                         in_layers=[
                             Dense(in_layers=[prev_layer],
                                   out_channels=n_tasks,
                                   weights_initializer=TFWrapper(
                                       tf.truncated_normal_initializer,
                                       stddev=weight_init_stddevs[-1]),
                                   biases_initializer=TFWrapper(
                                       tf.constant_initializer,
                                       value=bias_init_consts[-1]))
                         ])
        self.add_output(output)
        labels = Label(shape=(None, n_tasks, 1))
        weights = Weights(shape=(None, n_tasks, 1))
        if uncertainty:
            log_var = Reshape(
                shape=(-1, n_tasks, 1),
                in_layers=[
                    Dense(in_layers=[prev_layer],
                          out_channels=n_tasks,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_init_stddevs[-1]),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=0.0))
                ])
            var = Exp(log_var)
            self.add_variance(var)
            diff = labels - output
            weighted_loss = weights * (diff * diff / var + log_var)
            weighted_loss = ReduceSum(ReduceMean(weighted_loss, axis=[1, 2]))
        else:
            weighted_loss = ReduceSum(
                L2Loss(in_layers=[labels, output, weights]))
        if weight_decay_penalty != 0.0:
            weighted_loss = WeightDecay(weight_decay_penalty,
                                        weight_decay_penalty_type,
                                        in_layers=[weighted_loss])
        self.set_loss(weighted_loss)
示例#20
0
deg_adjs = []
for i in range(0, 10 + 1):
    deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
    deg_adjs.append(deg_adj)

gc1 = GraphConv(64,
                activation_fn=tf.nn.relu,
                in_layers=[atom_features, degree_slice, membership] + deg_adjs)
batch_norm1 = BatchNorm(in_layers=[gc1])
gp1 = GraphPool(in_layers=[batch_norm1, degree_slice, membership] + deg_adjs)
gc2 = GraphConv(64,
                activation_fn=tf.nn.relu,
                in_layers=[gp1, degree_slice, membership] + deg_adjs)
batch_norm2 = BatchNorm(in_layers=[gc2])
gp2 = GraphPool(in_layers=[batch_norm2, degree_slice, membership] + deg_adjs)
dense = Dense(out_channels=128, activation_fn=tf.nn.relu, in_layers=[gp2])
batch_norm3 = BatchNorm(in_layers=[dense])
readout = GraphGather(batch_size=batch_size,
                      activation_fn=tf.nn.tanh,
                      in_layers=[batch_norm3, degree_slice, membership] +
                      deg_adjs)

costs = []
labels = []
for task in range(len(current_tasks)):
    classification = Dense(out_channels=2,
                           activation_fn=None,
                           in_layers=[readout])

    softmax = SoftMax(in_layers=[classification])
    tg.add_output(softmax)
示例#21
0
gc2 = GraphConv(64,
                activation_fn=tf.nn.relu,
                in_layers=[dp1, degree_slice, membership] + deg_adjs)
bn2 = BatchNorm(in_layers=[gc2])
gp2 = GraphPool(in_layers=[bn2, degree_slice, membership] + deg_adjs)
dp2 = Dropout(0.5, in_layers=gp2)

gc3 = GraphConv(64,
                activation_fn=tf.nn.relu,
                in_layers=[dp2, degree_slice, membership] + deg_adjs)
bn3 = BatchNorm(in_layers=[gc3])
gp3 = GraphPool(in_layers=[b3, degree_slice, membership] + deg_adjs)
dp3 = Dropout(0.5, in_layers=gp3)

dense1 = Dense(out_channels=128, activation_fn=tf.nn.relu, in_layers=[dp3])
out1 = GraphGather(batch_size=n_batch,
                   activation_fn=tf.nn.tanh,
                   in_layers=[dense1, degree_slice, membership] + deg_adjs)

# in this model, multilabel (15 precursors) shall be classified
# using the trained featuret vector
cost15 = []
for ts in range(ntask):
    label_t = label15[ts]
    classification_t = Dense(out_channels=2, in_layers=[out1])
    softmax_t = SoftMax(in_layers=[classification_t])
    tg.add_output(softmax_t)
    cost_t = SoftMaxCrossEntropy(in_layers=[label_t, classification_t])
    cost15.append(cost_t)
示例#22
0
    def build_graph(self):
        self.vertex_features = Feature(shape=(None, self.max_atoms, 75))
        self.adj_matrix = Feature(shape=(None, self.max_atoms, 1,
                                         self.max_atoms))
        self.mask = Feature(shape=(None, self.max_atoms, 1))

        gcnn1 = BatchNorm(
            GraphCNN(
                num_filters=64,
                in_layers=[self.vertex_features, self.adj_matrix, self.mask]))
        gcnn1 = Dropout(self.dropout, in_layers=gcnn1)
        gcnn2 = BatchNorm(
            GraphCNN(num_filters=64,
                     in_layers=[gcnn1, self.adj_matrix, self.mask]))
        gcnn2 = Dropout(self.dropout, in_layers=gcnn2)
        gc_pool, adj_matrix = GraphCNNPool(
            num_vertices=32, in_layers=[gcnn2, self.adj_matrix, self.mask])
        gc_pool = BatchNorm(gc_pool)
        gc_pool = Dropout(self.dropout, in_layers=gc_pool)
        gcnn3 = BatchNorm(
            GraphCNN(num_filters=32, in_layers=[gc_pool, adj_matrix]))
        gcnn3 = Dropout(self.dropout, in_layers=gcnn3)
        gc_pool2, adj_matrix2 = GraphCNNPool(num_vertices=8,
                                             in_layers=[gcnn3, adj_matrix])
        gc_pool2 = BatchNorm(gc_pool2)
        gc_pool2 = Dropout(self.dropout, in_layers=gc_pool2)
        flattened = Flatten(in_layers=gc_pool2)
        readout = Dense(out_channels=256,
                        activation_fn=tf.nn.relu,
                        in_layers=flattened)
        costs = []
        self.my_labels = []
        for task in range(self.n_tasks):
            if self.mode == 'classification':
                classification = Dense(out_channels=2,
                                       activation_fn=None,
                                       in_layers=[readout])

                softmax = SoftMax(in_layers=[classification])
                self.add_output(softmax)

                label = Label(shape=(None, 2))
                self.my_labels.append(label)
                cost = SoftMaxCrossEntropy(in_layers=[label, classification])
                costs.append(cost)
            if self.mode == 'regression':
                regression = Dense(out_channels=1,
                                   activation_fn=None,
                                   in_layers=[readout])
                self.add_output(regression)

                label = Label(shape=(None, 1))
                self.my_labels.append(label)
                cost = L2Loss(in_layers=[label, regression])
                costs.append(cost)
        if self.mode == "classification":
            entropy = Stack(in_layers=costs, axis=-1)
        elif self.mode == "regression":
            entropy = Stack(in_layers=costs, axis=1)
        self.my_task_weights = Weights(shape=(None, self.n_tasks))
        loss = WeightedError(in_layers=[entropy, self.my_task_weights])
        self.set_loss(loss)
示例#23
0
    def build_graph(self):
        self.atom_features = Feature(shape=(None, self.n_atom_feat))
        self.pair_features = Feature(shape=(None, self.n_pair_feat))
        self.pair_split = Feature(shape=(None, ), dtype=tf.int32)
        self.atom_split = Feature(shape=(None, ), dtype=tf.int32)
        self.atom_to_pair = Feature(shape=(None, 2), dtype=tf.int32)
        weave_layer1A, weave_layer1P = WeaveLayerFactory(
            n_atom_input_feat=self.n_atom_feat,
            n_pair_input_feat=self.n_pair_feat,
            n_atom_output_feat=self.n_hidden[0],
            n_pair_output_feat=self.n_hidden[0],
            in_layers=[
                self.atom_features, self.pair_features, self.pair_split,
                self.atom_to_pair
            ])
        for myind in range(1, len(self.n_hidden) - 1):
            weave_layer1A, weave_layer1P = WeaveLayerFactory(
                n_atom_input_feat=self.n_hidden[myind - 1],
                n_pair_input_feat=self.n_hidden[myind - 1],
                n_atom_output_feat=self.n_hidden[myind],
                n_pair_output_feat=self.n_hidden[myind],
                update_pair=True,
                in_layers=[
                    weave_layer1A, weave_layer1P, self.pair_split,
                    self.atom_to_pair
                ])
        if len(self.n_hidden) > 1.5:
            myind = len(self.n_hidden) - 1
            weave_layer1A, weave_layer1P = WeaveLayerFactory(
                n_atom_input_feat=self.n_hidden[myind - 1],
                n_pair_input_feat=self.n_hidden[myind - 1],
                n_atom_output_feat=self.n_hidden[myind],
                n_pair_output_feat=self.n_hidden[myind],
                update_pair=False,
                in_layers=[
                    weave_layer1A, weave_layer1P, self.pair_split,
                    self.atom_to_pair
                ])
        dense1 = Dense(out_channels=self.n_graph_feat[0],
                       activation_fn=tf.nn.tanh,
                       in_layers=weave_layer1A)
        #batch_norm1 = BatchNormalization(epsilon=1e-5, mode=1, in_layers=[dense1])
        batch_norm1 = MyBatchNorm(in_layers=[dense1])
        weave_gather = WeaveGather(self.batch_size,
                                   n_input=self.n_graph_feat[0],
                                   gaussian_expand=False,
                                   in_layers=[batch_norm1, self.atom_split])

        weave_gatherBatchNorm2 = MyBatchNorm(in_layers=[weave_gather])
        curLayer = weave_gatherBatchNorm2
        for myind in range(1, len(self.n_graph_feat) - 1):
            curLayer = Dense(out_channels=self.n_graph_feat[myind],
                             activation_fn=tf.nn.relu,
                             in_layers=[curLayer])
            curLayer = Dropout(self.dropout, in_layers=[curLayer])

        classification = Dense(out_channels=self.n_tasks,
                               activation_fn=None,
                               in_layers=[curLayer])
        sigmoid = MySigmoid(in_layers=[classification])
        self.add_output(sigmoid)

        self.label = Label(shape=(None, self.n_tasks))
        all_cost = MySigmoidCrossEntropy(
            in_layers=[self.label, classification])
        self.weights = Weights(shape=(None, self.n_tasks))
        loss = WeightedError(in_layers=[all_cost, self.weights])
        self.set_loss(loss)

        self.mydense1 = dense1
        self.mybatch_norm1 = batch_norm1
        self.myweave_gather = weave_gather
        self.myclassification = classification
        self.mysigmoid = sigmoid
        self.myall_cost = all_cost
        self.myloss = loss
示例#24
0
    def __init__(self,
                 n_tasks,
                 n_features,
                 alpha_init_stddevs=0.02,
                 layer_sizes=[1000],
                 weight_init_stddevs=0.02,
                 bias_init_consts=1.0,
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=0.5,
                 activation_fns=tf.nn.relu,
                 **kwargs):
        """Creates a progressive network.
  
    Only listing parameters specific to progressive networks here.

    Parameters
    ----------
    n_tasks: int
      Number of tasks
    n_features: int
      Number of input features
    alpha_init_stddevs: list
      List of standard-deviations for alpha in adapter layers.
    layer_sizes: list
      the size of each dense layer in the network.  The length of this list determines the number of layers.
    weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight initialization of each layer.  The length
      of this list should equal len(layer_sizes)+1.  The final element corresponds to the output layer.
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    bias_init_consts: list or float
      the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes)+1.
      The final element corresponds to the output layer.  Alternatively this may be a single value instead of a list,
      in which case the same value is used for every layer.
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list or float
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    activation_fns: list or object
      the Tensorflow activation function to apply to each layer.  The length of this list should equal
      len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
      same value is used for every layer.
    """

        super(ProgressiveMultitaskRegressor, self).__init__(**kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        self.layer_sizes = layer_sizes
        self.alpha_init_stddevs = alpha_init_stddevs
        self.weight_init_stddevs = weight_init_stddevs
        self.bias_init_consts = bias_init_consts
        self.dropouts = dropouts
        self.activation_fns = activation_fns

        n_layers = len(layer_sizes)
        if not isinstance(weight_init_stddevs, collections.Sequence):
            self.weight_init_stddevs = [weight_init_stddevs] * n_layers
        if not isinstance(alpha_init_stddevs, collections.Sequence):
            self.alpha_init_stddevs = [alpha_init_stddevs] * n_layers
        if not isinstance(bias_init_consts, collections.Sequence):
            self.bias_init_consts = [bias_init_consts] * n_layers
        if not isinstance(dropouts, collections.Sequence):
            self.dropouts = [dropouts] * n_layers
        if not isinstance(activation_fns, collections.Sequence):
            self.activation_fns = [activation_fns] * n_layers

        # Add the input features.
        self.mol_features = Feature(shape=(None, n_features))

        all_layers = {}
        outputs = []
        for task in range(self.n_tasks):
            task_layers = []
            for i in range(n_layers):
                if i == 0:
                    prev_layer = self.mol_features
                else:
                    prev_layer = all_layers[(i - 1, task)]
                    if task > 0:
                        lateral_contrib, trainables = self.add_adapter(
                            all_layers, task, i)
                        task_layers.extend(trainables)

                layer = Dense(in_layers=[prev_layer],
                              out_channels=layer_sizes[i],
                              activation_fn=None,
                              weights_initializer=TFWrapper(
                                  tf.truncated_normal_initializer,
                                  stddev=self.weight_init_stddevs[i]),
                              biases_initializer=TFWrapper(
                                  tf.constant_initializer,
                                  value=self.bias_init_consts[i]))
                task_layers.append(layer)

                if i > 0 and task > 0:
                    layer = layer + lateral_contrib
                assert self.activation_fns[
                    i] is tf.nn.relu, "Only ReLU is supported"
                layer = ReLU(in_layers=[layer])
                if self.dropouts[i] > 0.0:
                    layer = Dropout(self.dropouts[i], in_layers=[layer])
                all_layers[(i, task)] = layer

            prev_layer = all_layers[(n_layers - 1, task)]
            layer = Dense(in_layers=[prev_layer],
                          out_channels=1,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=self.weight_init_stddevs[-1]),
                          biases_initializer=TFWrapper(
                              tf.constant_initializer,
                              value=self.bias_init_consts[-1]))
            task_layers.append(layer)

            if task > 0:
                lateral_contrib, trainables = self.add_adapter(
                    all_layers, task, n_layers)
                task_layers.extend(trainables)
                layer = layer + lateral_contrib
            outputs.append(layer)
            self.add_output(layer)
            task_label = Label(shape=(None, 1))
            task_weight = Weights(shape=(None, 1))
            weighted_loss = ReduceSum(
                L2Loss(in_layers=[task_label, layer, task_weight]))
            self.create_submodel(layers=task_layers,
                                 loss=weighted_loss,
                                 optimizer=None)
        # Weight decay not activated
        """
示例#25
0
  def build_graph(self):
    """
    Building graph structures:
    """
    self.atom_features = Feature(shape=(None, 75))
    self.degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
    self.membership = Feature(shape=(None,), dtype=tf.int32)

    self.deg_adjs = []
    for i in range(0, 10 + 1):
      deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
      self.deg_adjs.append(deg_adj)
    gc1 = GraphConv(
        64,
        activation_fn=tf.nn.relu,
        in_layers=[self.atom_features, self.degree_slice, self.membership] +
        self.deg_adjs)
    batch_norm1 = BatchNorm(in_layers=[gc1])
    gp1 = GraphPool(in_layers=[batch_norm1, self.degree_slice, self.membership]
                    + self.deg_adjs)
    gc2 = GraphConv(
        64,
        activation_fn=tf.nn.relu,
        in_layers=[gp1, self.degree_slice, self.membership] + self.deg_adjs)
    batch_norm2 = BatchNorm(in_layers=[gc2])
    gp2 = GraphPool(in_layers=[batch_norm2, self.degree_slice, self.membership]
                    + self.deg_adjs)
    dense = Dense(out_channels=128, activation_fn=tf.nn.relu, in_layers=[gp2])
    batch_norm3 = BatchNorm(in_layers=[dense])
    readout = GraphGather(
        batch_size=self.batch_size,
        activation_fn=tf.nn.tanh,
        in_layers=[batch_norm3, self.degree_slice, self.membership] +
        self.deg_adjs)

    if self.error_bars == True:
      readout = Dropout(in_layers=[readout], dropout_prob=0.2)

    costs = []
    self.my_labels = []
    for task in range(self.n_tasks):
      if self.mode == 'classification':
        classification = Dense(
            out_channels=2, activation_fn=None, in_layers=[readout])

        softmax = SoftMax(in_layers=[classification])
        self.add_output(softmax)

        label = Label(shape=(None, 2))
        self.my_labels.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)
      if self.mode == 'regression':
        regression = Dense(
            out_channels=1, activation_fn=None, in_layers=[readout])
        self.add_output(regression)

        label = Label(shape=(None, 1))
        self.my_labels.append(label)
        cost = L2Loss(in_layers=[label, regression])
        costs.append(cost)
    if self.mode == "classification":
      entropy = Concat(in_layers=costs, axis=-1)
    elif self.mode == "regression":
      entropy = Stack(in_layers=costs, axis=1)
    self.my_task_weights = Weights(shape=(None, self.n_tasks))
    loss = WeightedError(in_layers=[entropy, self.my_task_weights])
    self.set_loss(loss)
示例#26
0
def graph_conv_model(batch_size, tasks):
    model = TensorGraph(model_dir=model_dir,
                        batch_size=batch_size,
                        use_queue=False)
    atom_features = Feature(shape=(None, 75))
    degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
    membership = Feature(shape=(None, ), dtype=tf.int32)

    deg_adjs = []
    for i in range(0, 10 + 1):
        deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
        deg_adjs.append(deg_adj)
    gc1 = GraphConv(64,
                    activation_fn=tf.nn.relu,
                    in_layers=[atom_features, degree_slice, membership] +
                    deg_adjs)
    batch_norm1 = BatchNorm(in_layers=[gc1])
    gp1 = GraphPool(in_layers=[batch_norm1, degree_slice, membership] +
                    deg_adjs)
    gc2 = GraphConv(64,
                    activation_fn=tf.nn.relu,
                    in_layers=[gp1, degree_slice, membership] + deg_adjs)
    batch_norm2 = BatchNorm(in_layers=[gc2])
    gp2 = GraphPool(in_layers=[batch_norm2, degree_slice, membership] +
                    deg_adjs)
    dense = Dense(out_channels=128, activation_fn=None, in_layers=[gp2])
    batch_norm3 = BatchNorm(in_layers=[dense])
    gg1 = GraphGather(batch_size=batch_size,
                      activation_fn=tf.nn.tanh,
                      in_layers=[batch_norm3, degree_slice, membership] +
                      deg_adjs)

    costs = []
    labels = []
    for task in tasks:
        classification = Dense(out_channels=2,
                               activation_fn=None,
                               in_layers=[gg1])

        softmax = SoftMax(in_layers=[classification])
        model.add_output(softmax)

        label = Label(shape=(None, 2))
        labels.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)

    entropy = Concat(in_layers=costs)
    task_weights = Weights(shape=(None, len(tasks)))
    loss = WeightedError(in_layers=[entropy, task_weights])
    model.set_loss(loss)

    def feed_dict_generator(dataset, batch_size, epochs=1):
        for epoch in range(epochs):
            for ind, (X_b, y_b, w_b, ids_b) in enumerate(
                    dataset.iterbatches(batch_size, pad_batches=True)):
                d = {}
                for index, label in enumerate(labels):
                    d[label] = to_one_hot(y_b[:, index])
                d[task_weights] = w_b
                multiConvMol = ConvMol.agglomerate_mols(X_b)
                d[atom_features] = multiConvMol.get_atom_features()
                d[degree_slice] = multiConvMol.deg_slice
                d[membership] = multiConvMol.membership
                for i in range(1, len(multiConvMol.get_deg_adjacency_lists())):
                    d[deg_adjs[i -
                               1]] = multiConvMol.get_deg_adjacency_lists()[i]
                yield d

    return model, feed_dict_generator, labels, task_weights
示例#27
0
文件: fcnet.py 项目: zhshLee/deepchem
    def __init__(self,
                 n_tasks,
                 n_features,
                 layer_sizes=[1000],
                 weight_init_stddevs=0.02,
                 bias_init_consts=1.0,
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=0.5,
                 activation_fns=tf.nn.relu,
                 n_classes=2,
                 **kwargs):
        """Create a MultitaskClassifier.

    In addition to the following arguments, this class also accepts
    all the keyword arguments from TensorGraph.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of
      this list determines the number of layers.
    weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight
      initialization of each layer.  The length of this list should
      equal len(layer_sizes).  Alternatively this may be a single
      value instead of a list, in which case the same value is used
      for every layer.
    bias_init_consts: list or loat
      the value to initialize the biases in each layer to.  The
      length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in
      which case the same value is used for every layer.
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list or float
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    activation_fns: list or object
      the Tensorflow activation function to apply to each layer.  The length of this list should equal
      len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
      same value is used for every layer.
    n_classes: int
      the number of classes
    """
        super(MultitaskClassifier, self).__init__(**kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        self.n_classes = n_classes
        n_layers = len(layer_sizes)
        if not isinstance(weight_init_stddevs, collections.Sequence):
            weight_init_stddevs = [weight_init_stddevs] * n_layers
        if not isinstance(bias_init_consts, collections.Sequence):
            bias_init_consts = [bias_init_consts] * n_layers
        if not isinstance(dropouts, collections.Sequence):
            dropouts = [dropouts] * n_layers
        if not isinstance(activation_fns, collections.Sequence):
            activation_fns = [activation_fns] * n_layers

        # Add the input features.

        mol_features = Feature(shape=(None, n_features))
        prev_layer = mol_features

        # Add the dense layers

        for size, weight_stddev, bias_const, dropout, activation_fn in zip(
                layer_sizes, weight_init_stddevs, bias_init_consts, dropouts,
                activation_fns):
            layer = Dense(in_layers=[prev_layer],
                          out_channels=size,
                          activation_fn=activation_fn,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_stddev),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=bias_const))
            if dropout > 0.0:
                layer = Dropout(dropout, in_layers=[layer])
            prev_layer = layer

        # Compute the loss function for each label.
        self.neural_fingerprint = prev_layer

        logits = Reshape(shape=(-1, n_tasks, n_classes),
                         in_layers=[
                             Dense(in_layers=[prev_layer],
                                   out_channels=n_tasks * n_classes)
                         ])
        output = SoftMax(logits)
        self.add_output(output)
        labels = Label(shape=(None, n_tasks, n_classes))
        weights = Weights(shape=(None, n_tasks))
        loss = SoftMaxCrossEntropy(in_layers=[labels, logits])
        weighted_loss = WeightedError(in_layers=[loss, weights])
        if weight_decay_penalty != 0.0:
            weighted_loss = WeightDecay(weight_decay_penalty,
                                        weight_decay_penalty_type,
                                        in_layers=[weighted_loss])
        self.set_loss(weighted_loss)
示例#28
0
def graph_conv_net(batch_size, prior, num_task):
    """
    Build a tensorgraph for multilabel classification task

    Return: features and labels layers
    """
    tg = TensorGraph(use_queue=False)
    if prior == True:
        add_on = num_task
    else:
        add_on = 0
    atom_features = Feature(shape=(None, 75 + 2 * add_on))
    circular_features = Feature(shape=(batch_size, 256), dtype=tf.float32)

    degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
    membership = Feature(shape=(None, ), dtype=tf.int32)
    deg_adjs = []
    for i in range(0, 10 + 1):
        deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
        deg_adjs.append(deg_adj)

    gc1 = GraphConv(64 + add_on,
                    activation_fn=tf.nn.elu,
                    in_layers=[atom_features, degree_slice, membership] +
                    deg_adjs)
    batch_norm1 = BatchNorm(in_layers=[gc1])
    gp1 = GraphPool(in_layers=[batch_norm1, degree_slice, membership] +
                    deg_adjs)

    gc2 = GraphConv(64 + add_on,
                    activation_fn=tf.nn.elu,
                    in_layers=[gc1, degree_slice, membership] + deg_adjs)
    batch_norm2 = BatchNorm(in_layers=[gc2])
    gp2 = GraphPool(in_layers=[batch_norm2, degree_slice, membership] +
                    deg_adjs)

    add = Concat(in_layers=[gp1, gp2])
    add = Dropout(0.5, in_layers=[add])
    dense = Dense(out_channels=128, activation_fn=tf.nn.elu, in_layers=[add])
    batch_norm3 = BatchNorm(in_layers=[dense])
    readout = GraphGather(batch_size=batch_size,
                          activation_fn=tf.nn.tanh,
                          in_layers=[batch_norm3, degree_slice, membership] +
                          deg_adjs)
    batch_norm4 = BatchNorm(in_layers=[readout])

    dense1 = Dense(out_channels=128,
                   activation_fn=tf.nn.elu,
                   in_layers=[circular_features])
    dense1 = BatchNorm(in_layers=[dense1])
    dense1 = Dropout(0.5, in_layers=[dense1])
    dense1 = Dense(out_channels=128,
                   activation_fn=tf.nn.elu,
                   in_layers=[circular_features])
    dense1 = BatchNorm(in_layers=[dense1])
    dense1 = Dropout(0.5, in_layers=[dense1])
    merge_feat = Concat(in_layers=[dense1, batch_norm4])
    merge = Dense(out_channels=256,
                  activation_fn=tf.nn.elu,
                  in_layers=[merge_feat])
    costs = []
    labels = []
    for task in range(num_task):
        classification = Dense(out_channels=2,
                               activation_fn=None,
                               in_layers=[merge])
        softmax = SoftMax(in_layers=[classification])
        tg.add_output(softmax)
        label = Label(shape=(None, 2))
        labels.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)
    all_cost = Stack(in_layers=costs, axis=1)
    weights = Weights(shape=(None, num_task))
    loss = WeightedError(in_layers=[all_cost, weights])
    tg.set_loss(loss)
    #if prior == True:
    #    return tg, atom_features,circular_features, degree_slice, membership, deg_adjs, labels, weights#, prior_layer
    return tg, atom_features, circular_features, degree_slice, membership, deg_adjs, labels, weights
示例#29
0
    def build_graph(self):
        # inputs placeholder
        self.inputs = Feature(shape=(None, self.image_size, self.image_size,
                                     3),
                              dtype=tf.float32)
        # data preprocessing and augmentation
        in_layer = DRAugment(self.augment,
                             self.batch_size,
                             size=(self.image_size, self.image_size),
                             in_layers=[self.inputs])
        # first conv layer
        in_layer = Conv2D(int(self.n_init_kernel),
                          kernel_size=7,
                          activation_fn=None,
                          in_layers=[in_layer])
        in_layer = BatchNorm(in_layers=[in_layer])
        in_layer = ReLU(in_layers=[in_layer])

        # downsample by max pooling
        res_in = MaxPool2D(ksize=[1, 3, 3, 1],
                           strides=[1, 2, 2, 1],
                           in_layers=[in_layer])

        for ct_module in range(self.n_downsample - 1):
            # each module is a residual convolutional block
            # followed by a convolutional downsample layer
            in_layer = Conv2D(int(self.n_init_kernel * 2**(ct_module - 1)),
                              kernel_size=1,
                              activation_fn=None,
                              in_layers=[res_in])
            in_layer = BatchNorm(in_layers=[in_layer])
            in_layer = ReLU(in_layers=[in_layer])
            in_layer = Conv2D(int(self.n_init_kernel * 2**(ct_module - 1)),
                              kernel_size=3,
                              activation_fn=None,
                              in_layers=[in_layer])
            in_layer = BatchNorm(in_layers=[in_layer])
            in_layer = ReLU(in_layers=[in_layer])
            in_layer = Conv2D(int(self.n_init_kernel * 2**ct_module),
                              kernel_size=1,
                              activation_fn=None,
                              in_layers=[in_layer])
            res_a = BatchNorm(in_layers=[in_layer])

            res_out = res_in + res_a
            res_in = Conv2D(int(self.n_init_kernel * 2**(ct_module + 1)),
                            kernel_size=3,
                            stride=2,
                            in_layers=[res_out])
            res_in = BatchNorm(in_layers=[res_in])

        # max pooling over the final outcome
        in_layer = ReduceMax(axis=(1, 2), in_layers=[res_in])

        for layer_size in self.n_fully_connected:
            # fully connected layers
            in_layer = Dense(layer_size,
                             activation_fn=tf.nn.relu,
                             in_layers=[in_layer])
            # dropout for dense layers
            #in_layer = Dropout(0.25, in_layers=[in_layer])

        logit_pred = Dense(self.n_tasks * self.n_classes,
                           activation_fn=None,
                           in_layers=[in_layer])
        logit_pred = Reshape(shape=(None, self.n_tasks, self.n_classes),
                             in_layers=[logit_pred])

        weights = Weights(shape=(None, self.n_tasks))
        labels = Label(shape=(None, self.n_tasks), dtype=tf.int32)

        output = SoftMax(logit_pred)
        self.add_output(output)
        loss = SparseSoftMaxCrossEntropy(in_layers=[labels, logit_pred])
        weighted_loss = WeightedError(in_layers=[loss, weights])

        # weight decay regularizer
        # weighted_loss = WeightDecay(0.1, 'l2', in_layers=[weighted_loss])
        self.set_loss(weighted_loss)
示例#30
0
  def build_graph(self):
    """Building graph structures:
        Features => WeaveLayer => WeaveLayer => Dense => WeaveGather => Classification or Regression
        """
    self.atom_features = Feature(shape=(None, self.n_atom_feat))
    self.pair_features = Feature(shape=(None, self.n_pair_feat))
    combined = Combine_AP(in_layers=[self.atom_features, self.pair_features])
    self.pair_split = Feature(shape=(None,), dtype=tf.int32)
    self.atom_split = Feature(shape=(None,), dtype=tf.int32)
    self.atom_to_pair = Feature(shape=(None, 2), dtype=tf.int32)
    weave_layer1 = WeaveLayer(
        n_atom_input_feat=self.n_atom_feat,
        n_pair_input_feat=self.n_pair_feat,
        n_atom_output_feat=self.n_hidden,
        n_pair_output_feat=self.n_hidden,
        in_layers=[combined, self.pair_split, self.atom_to_pair])
    weave_layer2 = WeaveLayer(
        n_atom_input_feat=self.n_hidden,
        n_pair_input_feat=self.n_hidden,
        n_atom_output_feat=self.n_hidden,
        n_pair_output_feat=self.n_hidden,
        update_pair=False,
        in_layers=[weave_layer1, self.pair_split, self.atom_to_pair])
    separated = Separate_AP(in_layers=[weave_layer2])
    dense1 = Dense(
        out_channels=self.n_graph_feat,
        activation_fn=tf.nn.tanh,
        in_layers=[separated])
    batch_norm1 = BatchNormalization(epsilon=1e-5, mode=1, in_layers=[dense1])
    weave_gather = WeaveGather(
        self.batch_size,
        n_input=self.n_graph_feat,
        gaussian_expand=True,
        in_layers=[batch_norm1, self.atom_split])

    costs = []
    self.labels_fd = []
    for task in range(self.n_tasks):
      if self.mode == "classification":
        classification = Dense(
            out_channels=2, activation_fn=None, in_layers=[weave_gather])
        softmax = SoftMax(in_layers=[classification])
        self.add_output(softmax)

        label = Label(shape=(None, 2))
        self.labels_fd.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)
      if self.mode == "regression":
        regression = Dense(
            out_channels=1, activation_fn=None, in_layers=[weave_gather])
        self.add_output(regression)

        label = Label(shape=(None, 1))
        self.labels_fd.append(label)
        cost = L2Loss(in_layers=[label, regression])
        costs.append(cost)
    if self.mode == "classification":
      all_cost = Concat(in_layers=costs, axis=1)
    elif self.mode == "regression":
      all_cost = Stack(in_layers=costs, axis=1)
    self.weights = Weights(shape=(None, self.n_tasks))
    loss = WeightedError(in_layers=[all_cost, self.weights])
    self.set_loss(loss)
示例#31
0
    def __init__(self,
                 n_tasks,
                 n_features,
                 layer_sizes=[1000],
                 weight_init_stddevs=0.02,
                 bias_init_consts=1.0,
                 weight_decay_penalty=0.0,
                 weight_decay_penalty_type="l2",
                 dropouts=0.5,
                 activation_fns=tf.nn.relu,
                 bypass_layer_sizes=[100],
                 bypass_weight_init_stddevs=[.02],
                 bypass_bias_init_consts=[1.],
                 bypass_dropouts=[.5],
                 **kwargs):
        """ Create a RobustMultitaskRegressor.

    Parameters
    ----------
    n_tasks: int
      number of tasks
    n_features: int
      number of features
    layer_sizes: list
      the size of each dense layer in the network.  The length of this list determines the number of layers.
    weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight initialization of each layer.  The length
      of this list should equal len(layer_sizes).  Alternatively this may be a single value instead of a list,
      in which case the same value is used for every layer.
    bias_init_consts: list or loat
      the value to initialize the biases in each layer to.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    weight_decay_penalty: float
      the magnitude of the weight decay penalty to use
    weight_decay_penalty_type: str
      the type of penalty to use for weight decay, either 'l1' or 'l2'
    dropouts: list or float
      the dropout probablity to use for each layer.  The length of this list should equal len(layer_sizes).
      Alternatively this may be a single value instead of a list, in which case the same value is used for every layer.
    activation_fns: list or object
      the Tensorflow activation function to apply to each layer.  The length of this list should equal
      len(layer_sizes).  Alternatively this may be a single value instead of a list, in which case the
      same value is used for every layer.
    bypass_layer_sizes: list
      the size of each dense layer in the bypass network. The length of this list determines the number of bypass layers.
    bypass_weight_init_stddevs: list or float
      the standard deviation of the distribution to use for weight initialization of bypass layers.
      same requirements as weight_init_stddevs
    bypass_bias_init_consts: list or float
      the value to initialize the biases in bypass layers
      same requirements as bias_init_consts
    bypass_dropouts: list or float
      the dropout probablity to use for bypass layers.
      same requirements as dropouts
    """
        super(RobustMultitaskRegressor, self).__init__(**kwargs)
        self.n_tasks = n_tasks
        self.n_features = n_features
        n_layers = len(layer_sizes)
        if not isinstance(weight_init_stddevs, collections.Sequence):
            weight_init_stddevs = [weight_init_stddevs] * n_layers
        if not isinstance(bias_init_consts, collections.Sequence):
            bias_init_consts = [bias_init_consts] * n_layers
        if not isinstance(dropouts, collections.Sequence):
            dropouts = [dropouts] * n_layers
        if not isinstance(activation_fns, collections.Sequence):
            activation_fns = [activation_fns] * n_layers

        n_bypass_layers = len(bypass_layer_sizes)
        if not isinstance(bypass_weight_init_stddevs, collections.Sequence):
            bypass_weight_init_stddevs = [bypass_weight_init_stddevs
                                          ] * n_bypass_layers
        if not isinstance(bypass_bias_init_consts, collections.Sequence):
            bypass_bias_init_consts = [bypass_bias_init_consts
                                       ] * n_bypass_layers
        if not isinstance(bypass_dropouts, collections.Sequence):
            bypass_dropouts = [bypass_dropouts] * n_bypass_layers
        bypass_activation_fns = [activation_fns[0]] * n_bypass_layers

        # Add the input features.
        mol_features = Feature(shape=(None, n_features))
        prev_layer = mol_features

        # Add the shared dense layers
        for size, weight_stddev, bias_const, dropout, activation_fn in zip(
                layer_sizes, weight_init_stddevs, bias_init_consts, dropouts,
                activation_fns):
            layer = Dense(in_layers=[prev_layer],
                          out_channels=size,
                          activation_fn=activation_fn,
                          weights_initializer=TFWrapper(
                              tf.truncated_normal_initializer,
                              stddev=weight_stddev),
                          biases_initializer=TFWrapper(tf.constant_initializer,
                                                       value=bias_const))
            if dropout > 0.0:
                layer = Dropout(dropout, in_layers=[layer])
            prev_layer = layer
        top_multitask_layer = prev_layer

        task_outputs = []
        for i in range(self.n_tasks):
            prev_layer = mol_features
            # Add task-specific bypass layers
            for size, weight_stddev, bias_const, dropout, activation_fn in zip(
                    bypass_layer_sizes, bypass_weight_init_stddevs,
                    bypass_bias_init_consts, bypass_dropouts,
                    bypass_activation_fns):
                layer = Dense(in_layers=[prev_layer],
                              out_channels=size,
                              activation_fn=activation_fn,
                              weights_initializer=TFWrapper(
                                  tf.truncated_normal_initializer,
                                  stddev=weight_stddev),
                              biases_initializer=TFWrapper(
                                  tf.constant_initializer, value=bias_const))
                if dropout > 0.0:
                    layer = Dropout(dropout, in_layers=[layer])
                prev_layer = layer
            top_bypass_layer = prev_layer

            if n_bypass_layers > 0:
                task_layer = Concat(
                    axis=1, in_layers=[top_multitask_layer, top_bypass_layer])
            else:
                task_layer = top_multitask_layer

            task_out = Dense(in_layers=[task_layer], out_channels=1)
            task_outputs.append(task_out)

        output = Concat(axis=1, in_layers=task_outputs)

        self.add_output(output)
        labels = Label(shape=(None, n_tasks))
        weights = Weights(shape=(None, n_tasks))
        weighted_loss = ReduceSum(L2Loss(in_layers=[labels, output, weights]))
        if weight_decay_penalty != 0.0:
            weighted_loss = WeightDecay(weight_decay_penalty,
                                        weight_decay_penalty_type,
                                        in_layers=[weighted_loss])
        self.set_loss(weighted_loss)
def sluice_model(batch_size, tasks):
    model = TensorGraph(model_dir=model_dir,
                        batch_size=batch_size,
                        use_queue=False,
                        tensorboard=True)
    atom_features = Feature(shape=(None, 75))
    degree_slice = Feature(shape=(None, 2), dtype=tf.int32)
    membership = Feature(shape=(None, ), dtype=tf.int32)

    sluice_loss = []
    deg_adjs = []
    for i in range(0, 10 + 1):
        deg_adj = Feature(shape=(None, i + 1), dtype=tf.int32)
        deg_adjs.append(deg_adj)

    gc1 = GraphConv(64,
                    activation_fn=tf.nn.relu,
                    in_layers=[atom_features, degree_slice, membership] +
                    deg_adjs)

    as1 = AlphaShare(in_layers=[gc1, gc1])
    sluice_loss.append(gc1)

    batch_norm1a = BatchNorm(in_layers=[as1[0]])
    batch_norm1b = BatchNorm(in_layers=[as1[1]])

    gp1a = GraphPool(in_layers=[batch_norm1a, degree_slice, membership] +
                     deg_adjs)
    gp1b = GraphPool(in_layers=[batch_norm1b, degree_slice, membership] +
                     deg_adjs)

    gc2a = GraphConv(64,
                     activation_fn=tf.nn.relu,
                     in_layers=[gp1a, degree_slice, membership] + deg_adjs)
    gc2b = GraphConv(64,
                     activation_fn=tf.nn.relu,
                     in_layers=[gp1b, degree_slice, membership] + deg_adjs)

    as2 = AlphaShare(in_layers=[gc2a, gc2b])
    sluice_loss.append(gc2a)
    sluice_loss.append(gc2b)

    batch_norm2a = BatchNorm(in_layers=[as2[0]])
    batch_norm2b = BatchNorm(in_layers=[as2[1]])

    gp2a = GraphPool(in_layers=[batch_norm2a, degree_slice, membership] +
                     deg_adjs)
    gp2b = GraphPool(in_layers=[batch_norm2b, degree_slice, membership] +
                     deg_adjs)

    densea = Dense(out_channels=128, activation_fn=None, in_layers=[gp2a])
    denseb = Dense(out_channels=128, activation_fn=None, in_layers=[gp2b])

    batch_norm3a = BatchNorm(in_layers=[densea])
    batch_norm3b = BatchNorm(in_layers=[denseb])

    as3 = AlphaShare(in_layers=[batch_norm3a, batch_norm3b])
    sluice_loss.append(batch_norm3a)
    sluice_loss.append(batch_norm3b)

    gg1a = GraphGather(batch_size=batch_size,
                       activation_fn=tf.nn.tanh,
                       in_layers=[as3[0], degree_slice, membership] + deg_adjs)
    gg1b = GraphGather(batch_size=batch_size,
                       activation_fn=tf.nn.tanh,
                       in_layers=[as3[1], degree_slice, membership] + deg_adjs)

    costs = []
    labels = []
    count = 0
    for task in tasks:
        if count < len(tasks) / 2:
            classification = Dense(out_channels=2,
                                   activation_fn=None,
                                   in_layers=[gg1a])
            print("first half:")
            print(task)
        else:
            classification = Dense(out_channels=2,
                                   activation_fn=None,
                                   in_layers=[gg1b])
            print('second half')
            print(task)
        count += 1

        softmax = SoftMax(in_layers=[classification])
        model.add_output(softmax)

        label = Label(shape=(None, 2))
        labels.append(label)
        cost = SoftMaxCrossEntropy(in_layers=[label, classification])
        costs.append(cost)

    entropy = Concat(in_layers=costs)
    task_weights = Weights(shape=(None, len(tasks)))
    task_loss = WeightedError(in_layers=[entropy, task_weights])

    s_cost = SluiceLoss(in_layers=sluice_loss)

    total_loss = Add(in_layers=[task_loss, s_cost])
    model.set_loss(total_loss)

    def feed_dict_generator(dataset, batch_size, epochs=1):
        for epoch in range(epochs):
            for ind, (X_b, y_b, w_b, ids_b) in enumerate(
                    dataset.iterbatches(batch_size, pad_batches=True)):
                d = {}
                for index, label in enumerate(labels):
                    d[label] = to_one_hot(y_b[:, index])
                d[task_weights] = w_b
                multiConvMol = ConvMol.agglomerate_mols(X_b)
                d[atom_features] = multiConvMol.get_atom_features()
                d[degree_slice] = multiConvMol.deg_slice
                d[membership] = multiConvMol.membership
                for i in range(1, len(multiConvMol.get_deg_adjacency_lists())):
                    d[deg_adjs[i -
                               1]] = multiConvMol.get_deg_adjacency_lists()[i]
                yield d

    return model, feed_dict_generator, labels, task_weights
示例#33
0
    def build_graph(self):
        self.smiles_seqs = Feature(shape=(None, self.seq_length),
                                   dtype=tf.int32)
        # Character embedding
        self.Embedding = DTNNEmbedding(
            n_embedding=self.n_embedding,
            periodic_table_length=len(self.char_dict.keys()) + 1,
            in_layers=[self.smiles_seqs])
        self.pooled_outputs = []
        self.conv_layers = []
        for filter_size, num_filter in zip(self.kernel_sizes,
                                           self.num_filters):
            # Multiple convolutional layers with different filter widths
            self.conv_layers.append(
                Conv1D(kernel_size=filter_size,
                       filters=num_filter,
                       padding='valid',
                       in_layers=[self.Embedding]))
            # Max-over-time pooling
            self.pooled_outputs.append(
                ReduceMax(axis=1, in_layers=[self.conv_layers[-1]]))
        # Concat features from all filters(one feature per filter)
        concat_outputs = Concat(axis=1, in_layers=self.pooled_outputs)
        dropout = Dropout(dropout_prob=self.dropout,
                          in_layers=[concat_outputs])
        dense = Dense(out_channels=200,
                      activation_fn=tf.nn.relu,
                      in_layers=[dropout])
        # Highway layer from https://arxiv.org/pdf/1505.00387.pdf
        self.gather = Highway(in_layers=[dense])

        costs = []
        self.labels_fd = []
        for task in range(self.n_tasks):
            if self.mode == "classification":
                classification = Dense(out_channels=2,
                                       activation_fn=None,
                                       in_layers=[self.gather])
                softmax = SoftMax(in_layers=[classification])
                self.add_output(softmax)

                label = Label(shape=(None, 2))
                self.labels_fd.append(label)
                cost = SoftMaxCrossEntropy(in_layers=[label, classification])
                costs.append(cost)
            if self.mode == "regression":
                regression = Dense(out_channels=1,
                                   activation_fn=None,
                                   in_layers=[self.gather])
                self.add_output(regression)

                label = Label(shape=(None, 1))
                self.labels_fd.append(label)
                cost = L2Loss(in_layers=[label, regression])
                costs.append(cost)
        if self.mode == "classification":
            all_cost = Stack(in_layers=costs, axis=1)
        elif self.mode == "regression":
            all_cost = Stack(in_layers=costs, axis=1)
        self.weights = Weights(shape=(None, self.n_tasks))
        loss = WeightedError(in_layers=[all_cost, self.weights])
        self.set_loss(loss)