示例#1
0
  def scaffold_test_train_valid_test_split(self):
    """Test of singletask RF ECFP regression API."""
    splittype = "scaffold"
    input_transforms = []
    output_transforms = ["normalize"]
    model_params = {}
    tasks = ["log-solubility"]
    task_type = "regression"
    task_types = {task: task_type for task in tasks}
    input_file = os.path.join(self.current_dir, "example.csv")
    featurizer = CircularFingerprint(size=1024)

    input_file = os.path.join(self.current_dir, input_file)
    loader = DataLoader(tasks=tasks,
                        smiles_field=self.smiles_field,
                        featurizer=featurizer,
                        verbosity="low")

    dataset = loader.featurize(input_file, self.data_dir)

    # Splits featurized samples into train/test
    splitter = ScaffoldSplitter()
    train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(
        dataset, self.train_dir, self.valid_dir, self.test_dir)
    assert len(train_dataset) == 8
    assert len(valid_dataset) == 1
    assert len(test_dataset) == 1
  def test_multitask_tf_mlp_ECFP_classification_hyperparam_opt(self):
    """Straightforward test of Tensorflow multitask deepchem classification API."""
    splittype = "scaffold"
    task_type = "classification"

    input_file = os.path.join(self.current_dir, "multitask_example.csv")
    tasks = ["task0", "task1", "task2", "task3", "task4", "task5", "task6",
             "task7", "task8", "task9", "task10", "task11", "task12",
             "task13", "task14", "task15", "task16"]
    task_types = {task: task_type for task in tasks}

    featurizer = CircularFingerprint(size=1024)

    loader = DataLoader(tasks=tasks,
                        smiles_field=self.smiles_field,
                        featurizer=featurizer,
                        verbosity="low")
    dataset = loader.featurize(input_file, self.data_dir)

    splitter = ScaffoldSplitter()
    train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(
        dataset, self.train_dir, self.valid_dir, self.test_dir)

    transformers = []

    metric = Metric(metrics.matthews_corrcoef, np.mean, mode="classification")
    params_dict = {"activation": ["relu"],
                    "momentum": [.9],
                    "batch_size": [50],
                    "init": ["glorot_uniform"],
                    "data_shape": [train_dataset.get_data_shape()],
                    "learning_rate": [1e-3],
                    "decay": [1e-6],
                    "nb_hidden": [1000], 
                    "nb_epoch": [1],
                    "nesterov": [False],
                    "dropouts": [(.5,)],
                    "nb_layers": [1],
                    "batchnorm": [False],
                    "layer_sizes": [(1000,)],
                    "weight_init_stddevs": [(.1,)],
                    "bias_init_consts": [(1.,)],
                    "num_classes": [2],
                    "penalty": [0.], 
                    "optimizer": ["sgd"],
                    "num_classification_tasks": [len(task_types)]
                  }

    def model_builder(tasks, task_types, params_dict, logdir, verbosity=None):
        return TensorflowModel(
            tasks, task_types, params_dict, logdir, 
            tf_class=TensorflowMultiTaskClassifier,
            verbosity=verbosity)
    optimizer = HyperparamOpt(model_builder, tasks, task_types,
                              verbosity="low")
    best_model, best_hyperparams, all_results = optimizer.hyperparam_search(
      params_dict, train_dataset, valid_dataset, transformers,
      metric, logdir=None)
示例#3
0
 def test_singletask_scaffold_split(self):
     """
 Test singletask ScaffoldSplitter class.
 """
     solubility_dataset = self.load_solubility_data()
     scaffold_splitter = ScaffoldSplitter()
     train_data, valid_data, test_data = \
         scaffold_splitter.train_valid_test_split(
             solubility_dataset,
             self.train_dir, self.valid_dir, self.test_dir,
             frac_train=0.8, frac_valid=0.1, frac_test=0.1)
     assert len(train_data) == 8
     assert len(valid_data) == 1
     assert len(test_data) == 1
示例#4
0
 def test_multitask_scaffold_split(self):
   """
   Test multitask ScaffoldSplitter class.
   """
   multitask_dataset = self.load_multitask_data()
   scaffold_splitter = ScaffoldSplitter()
   train_data, valid_data, test_data = \
       scaffold_splitter.train_valid_test_split(
           multitask_dataset,
           self.train_dir, self.valid_dir, self.test_dir,
           frac_train=0.8, frac_valid=0.1, frac_test=0.1)
   assert len(train_data) == 8
   assert len(valid_data) == 1
   assert len(test_data) == 1
示例#5
0
    def _run_muv_experiment(self, dataset_file, reload=False, verbosity=None):
        """Loads or reloads a small version of MUV dataset."""
        # Load MUV dataset
        raw_dataset = load_from_disk(dataset_file)
        print("Number of examples in dataset: %s" % str(raw_dataset.shape[0]))

        print("About to featurize compounds")
        featurizer = CircularFingerprint(size=1024)
        MUV_tasks = [
            'MUV-692', 'MUV-689', 'MUV-846', 'MUV-859', 'MUV-644', 'MUV-548',
            'MUV-852', 'MUV-600', 'MUV-810', 'MUV-712', 'MUV-737', 'MUV-858',
            'MUV-713', 'MUV-733', 'MUV-652', 'MUV-466', 'MUV-832'
        ]
        loader = DataLoader(tasks=MUV_tasks,
                            smiles_field="smiles",
                            featurizer=featurizer,
                            verbosity=verbosity)
        dataset = loader.featurize(dataset_file, self.data_dir)
        assert len(dataset) == len(raw_dataset)

        print("About to split compounds into train/valid/test")
        splitter = ScaffoldSplitter(verbosity=verbosity)
        frac_train, frac_valid, frac_test = .8, .1, .1
        train_dataset, valid_dataset, test_dataset = \
            splitter.train_valid_test_split(
                dataset, self.train_dir, self.valid_dir, self.test_dir,
                log_every_n=1000, frac_train=frac_train,
                frac_test=frac_test, frac_valid=frac_valid)
        # Do an approximate comparison since splits are sometimes slightly off from
        # the exact fraction.
        assert relative_difference(len(train_dataset),
                                   frac_train * len(dataset)) < 1e-3
        assert relative_difference(len(valid_dataset),
                                   frac_valid * len(dataset)) < 1e-3
        assert relative_difference(len(test_dataset),
                                   frac_test * len(dataset)) < 1e-3

        # TODO(rbharath): Transformers don't play nice with reload! Namely,
        # reloading will cause the transform to be reapplied. This is undesirable in
        # almost all cases. Need to understand a method to fix this.
        transformers = [
            BalancingTransformer(transform_w=True, dataset=train_dataset)
        ]
        print("Transforming datasets")
        for dataset in [train_dataset, valid_dataset, test_dataset]:
            for transformer in transformers:
                transformer.transform(dataset)

        return (len(train_dataset), len(valid_dataset), len(test_dataset))
示例#6
0
  def _run_muv_experiment(self, dataset_file, reload=False, verbosity=None):
    """Loads or reloads a small version of MUV dataset."""
    # Load MUV dataset
    raw_dataset = load_from_disk(dataset_file)
    print("Number of examples in dataset: %s" % str(raw_dataset.shape[0]))

    print("About to featurize compounds")
    featurizer = CircularFingerprint(size=1024)
    MUV_tasks = ['MUV-692', 'MUV-689', 'MUV-846', 'MUV-859', 'MUV-644',
                 'MUV-548', 'MUV-852', 'MUV-600', 'MUV-810', 'MUV-712',
                 'MUV-737', 'MUV-858', 'MUV-713', 'MUV-733', 'MUV-652',
                 'MUV-466', 'MUV-832']
    loader = DataLoader(tasks=MUV_tasks,
                        smiles_field="smiles",
                        featurizer=featurizer,
                        verbosity=verbosity)
    dataset = loader.featurize(dataset_file, self.data_dir)
    assert len(dataset) == len(raw_dataset)

    print("About to split compounds into train/valid/test")
    splitter = ScaffoldSplitter(verbosity=verbosity)
    frac_train, frac_valid, frac_test = .8, .1, .1
    train_dataset, valid_dataset, test_dataset = \
        splitter.train_valid_test_split(
            dataset, self.train_dir, self.valid_dir, self.test_dir,
            log_every_n=1000, frac_train=frac_train,
            frac_test=frac_test, frac_valid=frac_valid)
    # Do an approximate comparison since splits are sometimes slightly off from
    # the exact fraction.
    assert relative_difference(
        len(train_dataset), frac_train * len(dataset)) < 1e-3
    assert relative_difference(
        len(valid_dataset), frac_valid * len(dataset)) < 1e-3
    assert relative_difference(
        len(test_dataset), frac_test * len(dataset)) < 1e-3

    # TODO(rbharath): Transformers don't play nice with reload! Namely,
    # reloading will cause the transform to be reapplied. This is undesirable in
    # almost all cases. Need to understand a method to fix this.
    transformers = [
        BalancingTransformer(transform_w=True, dataset=train_dataset)]
    print("Transforming datasets")
    for dataset in [train_dataset, valid_dataset, test_dataset]:
      for transformer in transformers:
          transformer.transform(dataset)

    return (len(train_dataset), len(valid_dataset), len(test_dataset))
示例#7
0
    def test_multitask_keras_mlp_ECFP_classification_hyperparam_opt(self):
        """Straightforward test of Keras multitask deepchem classification API."""
        task_type = "classification"
        input_file = os.path.join(self.current_dir, "multitask_example.csv")
        tasks = [
            "task0", "task1", "task2", "task3", "task4", "task5", "task6",
            "task7", "task8", "task9", "task10", "task11", "task12", "task13",
            "task14", "task15", "task16"
        ]

        n_features = 1024
        featurizer = CircularFingerprint(size=n_features)
        loader = DataLoader(tasks=tasks,
                            smiles_field=self.smiles_field,
                            featurizer=featurizer,
                            verbosity="low")
        dataset = loader.featurize(input_file, self.data_dir)

        splitter = ScaffoldSplitter()
        train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(
            dataset, self.train_dir, self.valid_dir, self.test_dir)

        transformers = []
        metric = Metric(metrics.matthews_corrcoef,
                        np.mean,
                        mode="classification")
        params_dict = {"n_hidden": [5, 10]}

        def model_builder(model_params, model_dir):
            keras_model = MultiTaskDNN(len(tasks),
                                       n_features,
                                       task_type,
                                       dropout=0.,
                                       **model_params)
            return KerasModel(keras_model, model_dir)

        optimizer = HyperparamOpt(model_builder, verbosity="low")
        best_model, best_hyperparams, all_results = optimizer.hyperparam_search(
            params_dict,
            train_dataset,
            valid_dataset,
            transformers,
            metric,
            logdir=None)
  def test_multitask_keras_mlp_ECFP_classification_hyperparam_opt(self):
    """Straightforward test of Keras multitask deepchem classification API."""
    task_type = "classification"
    input_file = os.path.join(self.current_dir, "multitask_example.csv")
    tasks = ["task0", "task1", "task2", "task3", "task4", "task5", "task6",
             "task7", "task8", "task9", "task10", "task11", "task12",
             "task13", "task14", "task15", "task16"]
    task_types = {task: task_type for task in tasks}

    featurizer = CircularFingerprint(size=1024)
    loader = DataLoader(tasks=tasks,
                        smiles_field=self.smiles_field,
                        featurizer=featurizer,
                        verbosity="low")
    dataset = loader.featurize(input_file, self.data_dir)

    splitter = ScaffoldSplitter()
    train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(
        dataset, self.train_dir, self.valid_dir, self.test_dir)

    transformers = []
    metric = Metric(metrics.matthews_corrcoef, np.mean, mode="classification")
    params_dict= {"nb_hidden": [5, 10],
                  "activation": ["relu"],
                  "dropout": [.5],
                  "learning_rate": [.01],
                  "momentum": [.9],
                  "nesterov": [False],
                  "decay": [1e-4],
                  "batch_size": [5],
                  "nb_epoch": [2],
                  "init": ["glorot_uniform"],
                  "nb_layers": [1],
                  "batchnorm": [False],
                  "data_shape": [train_dataset.get_data_shape()]}
    
    optimizer = HyperparamOpt(MultiTaskDNN, tasks, task_types,
                              verbosity="low")
    best_model, best_hyperparams, all_results = optimizer.hyperparam_search(
      params_dict, train_dataset, valid_dataset, transformers,
      metric, logdir=None)
示例#9
0
    def test_singletask_sklearn_rf_ECFP_regression_hyperparam_opt(self):
        """Test of hyperparam_opt with singletask RF ECFP regression API."""
        featurizer = CircularFingerprint(size=1024)
        tasks = ["log-solubility"]
        input_file = os.path.join(self.current_dir, "example.csv")
        loader = DataLoader(tasks=tasks,
                            smiles_field=self.smiles_field,
                            featurizer=featurizer,
                            verbosity="low")
        dataset = loader.featurize(input_file, self.data_dir)

        splitter = ScaffoldSplitter()
        train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(
            dataset, self.train_dir, self.valid_dir, self.test_dir)

        transformers = [
            NormalizationTransformer(transform_y=True, dataset=train_dataset)
        ]
        for dataset in [train_dataset, test_dataset]:
            for transformer in transformers:
                transformer.transform(dataset)

        params_dict = {"n_estimators": [10, 100]}
        metric = Metric(metrics.r2_score)

        def rf_model_builder(model_params, model_dir):
            sklearn_model = RandomForestRegressor(**model_params)
            return SklearnModel(sklearn_model, model_dir)

        optimizer = HyperparamOpt(rf_model_builder, verbosity="low")
        best_model, best_hyperparams, all_results = optimizer.hyperparam_search(
            params_dict,
            train_dataset,
            valid_dataset,
            transformers,
            metric,
            logdir=None)
  def test_singletask_sklearn_rf_ECFP_regression_hyperparam_opt(self):
    """Test of hyperparam_opt with singletask RF ECFP regression API."""
    splittype = "scaffold"
    featurizer = CircularFingerprint(size=1024)
    tasks = ["log-solubility"]
    task_type = "regression"
    task_types = {task: task_type for task in tasks}
    input_file = os.path.join(self.current_dir, "example.csv")
    loader = DataLoader(tasks=tasks,
                        smiles_field=self.smiles_field,
                        featurizer=featurizer,
                        verbosity="low")
    dataset = loader.featurize(input_file, self.data_dir)

    splitter = ScaffoldSplitter()
    train_dataset, valid_dataset, test_dataset = splitter.train_valid_test_split(
        dataset, self.train_dir, self.valid_dir, self.test_dir)

    input_transformers = []
    output_transformers = [
        NormalizationTransformer(transform_y=True, dataset=train_dataset)]
    transformers = input_transformers + output_transformers
    for dataset in [train_dataset, test_dataset]:
      for transformer in transformers:
        transformer.transform(dataset)
    params_dict = {
      "n_estimators": [10, 100],
      "max_features": ["auto"],
      "data_shape": train_dataset.get_data_shape()
    }
    metric = Metric(metrics.r2_score)

    optimizer = HyperparamOpt(rf_model_builder, tasks, task_types, verbosity="low")
    best_model, best_hyperparams, all_results = optimizer.hyperparam_search(
      params_dict, train_dataset, valid_dataset, output_transformers,
      metric, logdir=None)