def train_g64_d64_pyramid_preprocess_2layer(): nb_units = 64 generator_input_dim = 100 preprocess_input_dim = 50 preprocess_nb_hidden = 256 batch_size = 128 nb_batches_per_epoch = 100 nb_epoch = 200 output_dir = "models/train_g64_d64_pyramid_preprocess_2layer" os.makedirs(output_dir, exist_ok=True) g = dcgan_generator(nb_units, generator_input_dim) g.load_weights("models/dcgan_g64_d64_fine_tune/generator_0060.hdf5") p = Sequential() p.add( Dense(preprocess_nb_hidden, activation='relu', input_dim=preprocess_input_dim)) p.add( Dense(g.layers[0].input_shape[1], activation='relu', input_dim=preprocess_input_dim)) g.trainable = False p.add(g) save = SaveModels({"pyramid_{epoch:04d}.hdf5": p}, every_epoch=20, output_dir=output_dir) nb_z_param = preprocess_input_dim - nb_normalized_params() def generator(): for z, (param, grid_idx) in zip(z_generator((batch_size, nb_z_param)), grids_lecture_generator(batch_size)): yield np.concatenate([param, z], axis=1), grid_idx print(next(generator())[0].shape) print("Compiling...") start = time.time() p.compile('adam', to_keras_loss(pyramid_loss)) print("Done Compiling in {0:.2f}s".format(time.time() - start)) history = p.fit_generator(generator(), nb_batches_per_epoch * batch_size, nb_epoch, verbose=1, callbacks=[save]) with open(os.path.join(output_dir, "history.json"), 'w+') as f: json.dump(history.history, f) with open(os.path.join(output_dir, "network_config.json"), 'w+') as f: f.write(p.to_json())
def train_g64_d64_fine_tune(): nb_units = 64 generator_input_dim = 100 nb_real = 64 nb_fake = 128 + nb_real lr = 0.00002 beta_1 = 0.5 nb_batches_per_epoch = 100 nb_epoch = 60 output_dir = "models/dcgan_g64_d64_fine_tune" hdf5_fname = "/home/leon/data/tags_plain_t6.hdf5" g = dcgan_generator(nb_units, generator_input_dim) d = dcgan_discriminator(nb_units) g.load_weights("models/dcgan_g64_d64/generator.hdf5") d.load_weights("models/dcgan_g64_d64/fix_discriminator.hdf5") gan = sequential_to_gan(g, d, nb_real, nb_fake, nb_fake_for_gen=128, nb_fake_for_dis=nb_real) save = SaveModels( { "generator_{epoch:04d}.hdf5": g, "discriminator_{epoch:04d}.hdf5": d }, every_epoch=20, output_dir=output_dir) visual = VisualiseGAN(nb_samples=13**2, output_dir=output_dir, preprocess=lambda x: np.clip(x, -1, 1)) real_z_gen = zip_real_z(real_generator(hdf5_fname, nb_real, range=(-1, 1)), z_generator((nb_fake, generator_input_dim))) history = train_dcgan(gan, Adam(lr, beta_1), Adam(lr, beta_1), real_z_gen, nb_batches_per_epoch=nb_batches_per_epoch, nb_epoch=nb_epoch, callbacks=[save, visual]) with open(os.path.join(output_dir, "history.json"), 'w+') as f: json.dump(history.history, f)
def train_g64_d64_dct(): nb_units = 64 generator_input_dim = 25 nb_real = 64 nb_fake = 96 lr = 0.0002 beta_1 = 0.5 nb_batches_per_epoch = 100 nb_epoch = 1000 output_dir = "models/dcgan_g64_d64_dct" hdf5_fname = "/home/leon/data/tags_plain_t6.hdf5" g = dcgan_generator(nb_units, generator_input_dim) d = dcgan_discriminator(nb_units) gan = sequential_to_gan(g, d, nb_real, nb_fake) save = SaveModels({ "generator.hdf5": g, "discriminator.hdf5": d }, output_dir=output_dir) visual = VisualiseGAN(nb_samples=13**2, output_dir=output_dir, preprocess=lambda x: np.clip(x, -1, 1)) real_z_gen = zip_real_z(real_generator(hdf5_fname, nb_real), z_generator((nb_fake, generator_input_dim))) history = train_dcgan(gan, Adam(lr, beta_1), Adam(lr, beta_1), real_z_gen, nb_batches_per_epoch=nb_batches_per_epoch, nb_epoch=nb_epoch, callbacks=[save, visual]) with open(os.path.join(output_dir, "history.json"), 'w+') as f: json.dump(history.history, f)