示例#1
0
def train_g64_d64_pyramid_preprocess_2layer():
    nb_units = 64
    generator_input_dim = 100
    preprocess_input_dim = 50
    preprocess_nb_hidden = 256
    batch_size = 128
    nb_batches_per_epoch = 100
    nb_epoch = 200
    output_dir = "models/train_g64_d64_pyramid_preprocess_2layer"

    os.makedirs(output_dir, exist_ok=True)
    g = dcgan_generator(nb_units, generator_input_dim)
    g.load_weights("models/dcgan_g64_d64_fine_tune/generator_0060.hdf5")

    p = Sequential()
    p.add(
        Dense(preprocess_nb_hidden,
              activation='relu',
              input_dim=preprocess_input_dim))
    p.add(
        Dense(g.layers[0].input_shape[1],
              activation='relu',
              input_dim=preprocess_input_dim))
    g.trainable = False
    p.add(g)

    save = SaveModels({"pyramid_{epoch:04d}.hdf5": p},
                      every_epoch=20,
                      output_dir=output_dir)

    nb_z_param = preprocess_input_dim - nb_normalized_params()

    def generator():
        for z, (param, grid_idx) in zip(z_generator((batch_size, nb_z_param)),
                                        grids_lecture_generator(batch_size)):
            yield np.concatenate([param, z], axis=1), grid_idx

    print(next(generator())[0].shape)

    print("Compiling...")
    start = time.time()
    p.compile('adam', to_keras_loss(pyramid_loss))
    print("Done Compiling in {0:.2f}s".format(time.time() - start))

    history = p.fit_generator(generator(),
                              nb_batches_per_epoch * batch_size,
                              nb_epoch,
                              verbose=1,
                              callbacks=[save])

    with open(os.path.join(output_dir, "history.json"), 'w+') as f:
        json.dump(history.history, f)

    with open(os.path.join(output_dir, "network_config.json"), 'w+') as f:
        f.write(p.to_json())
示例#2
0
def train_g64_d64_fine_tune():
    nb_units = 64
    generator_input_dim = 100
    nb_real = 64
    nb_fake = 128 + nb_real
    lr = 0.00002
    beta_1 = 0.5
    nb_batches_per_epoch = 100
    nb_epoch = 60
    output_dir = "models/dcgan_g64_d64_fine_tune"
    hdf5_fname = "/home/leon/data/tags_plain_t6.hdf5"

    g = dcgan_generator(nb_units, generator_input_dim)
    d = dcgan_discriminator(nb_units)

    g.load_weights("models/dcgan_g64_d64/generator.hdf5")
    d.load_weights("models/dcgan_g64_d64/fix_discriminator.hdf5")

    gan = sequential_to_gan(g,
                            d,
                            nb_real,
                            nb_fake,
                            nb_fake_for_gen=128,
                            nb_fake_for_dis=nb_real)

    save = SaveModels(
        {
            "generator_{epoch:04d}.hdf5": g,
            "discriminator_{epoch:04d}.hdf5": d
        },
        every_epoch=20,
        output_dir=output_dir)
    visual = VisualiseGAN(nb_samples=13**2,
                          output_dir=output_dir,
                          preprocess=lambda x: np.clip(x, -1, 1))

    real_z_gen = zip_real_z(real_generator(hdf5_fname, nb_real, range=(-1, 1)),
                            z_generator((nb_fake, generator_input_dim)))

    history = train_dcgan(gan,
                          Adam(lr, beta_1),
                          Adam(lr, beta_1),
                          real_z_gen,
                          nb_batches_per_epoch=nb_batches_per_epoch,
                          nb_epoch=nb_epoch,
                          callbacks=[save, visual])

    with open(os.path.join(output_dir, "history.json"), 'w+') as f:
        json.dump(history.history, f)
示例#3
0
def train_g64_d64_dct():
    nb_units = 64
    generator_input_dim = 25
    nb_real = 64
    nb_fake = 96
    lr = 0.0002
    beta_1 = 0.5
    nb_batches_per_epoch = 100
    nb_epoch = 1000
    output_dir = "models/dcgan_g64_d64_dct"
    hdf5_fname = "/home/leon/data/tags_plain_t6.hdf5"

    g = dcgan_generator(nb_units, generator_input_dim)
    d = dcgan_discriminator(nb_units)

    gan = sequential_to_gan(g, d, nb_real, nb_fake)

    save = SaveModels({
        "generator.hdf5": g,
        "discriminator.hdf5": d
    },
                      output_dir=output_dir)
    visual = VisualiseGAN(nb_samples=13**2,
                          output_dir=output_dir,
                          preprocess=lambda x: np.clip(x, -1, 1))

    real_z_gen = zip_real_z(real_generator(hdf5_fname, nb_real),
                            z_generator((nb_fake, generator_input_dim)))

    history = train_dcgan(gan,
                          Adam(lr, beta_1),
                          Adam(lr, beta_1),
                          real_z_gen,
                          nb_batches_per_epoch=nb_batches_per_epoch,
                          nb_epoch=nb_epoch,
                          callbacks=[save, visual])
    with open(os.path.join(output_dir, "history.json"), 'w+') as f:
        json.dump(history.history, f)