示例#1
0
    def test_launch_interrupt(self, dataloader_dummy, monkeypatch):
        network = DummyNet(n_channels=dataloader_dummy.dataset.X.shape[1])
        loss = MeanReturns()

        class TempCallback(Callback):
            def on_train_begin(self, metadata):
                raise KeyboardInterrupt()

        monkeypatch.setattr('time.sleep', lambda x: None)
        run = Run(network, loss, dataloader_dummy, callbacks=[TempCallback()])

        run.launch(n_epochs=1)
示例#2
0
def train_model(network,
                train_dataloader,
                val_dataloaders,
                optimizer,
                callbacks,
                epochs=20,
                device="cpu",
                loss_="sharpe"):
    if loss_ == "sharpe":
        loss = SharpeRatio(returns_channel=0)
    else:
        loss = MaximumDrawdown(returns_channel=0)

    benchmarks = {"1overN": OneOverN()}
    metrics = {
        "drawdown": MaximumDrawdown(returns_channel=0),
        "sharpe": SharpeRatio(returns_channel=0)
    }
    run = Run(
        network,
        loss,
        train_dataloader,
        val_dataloaders=val_dataloaders,
        metrics=metrics,
        # benchmarks=benchmarks,
        device=torch.device(device),
        optimizer=optimizer,
        callbacks=callbacks,
    )
    history = run.launch(n_epochs=epochs)
    return run
示例#3
0
    def test_launch(self, dataloader_dummy):
        network = DummyNet(n_channels=dataloader_dummy.dataset.X.shape[1])
        loss = MeanReturns()
        run = Run(network, loss, dataloader_dummy)

        run.launch(n_epochs=1)
示例#4
0
run = Run(network,
          100 * MeanReturns(),
          dataloader,
          val_dataloaders=val_dataloaders,
          metrics={'sqweights': SquaredWeights()},
          benchmarks={
              '1overN': OneOverN(),
              'VAR': VARTrue(process),
              'Random': Random(),
              'InverseVol': InverseVolatility()
          },
          optimizer=torch.optim.Adam(network.parameters(), amsgrad=True),
          callbacks=[EarlyStoppingCallback('val', 'loss')])

history = run.launch(40)

fig, ax = plt.subplots(1, 1)
ax.set_title('Validation loss')

per_epoch_results = history.metrics.groupby(
    ['dataloader', 'metric', 'model', 'epoch'])['value'].mean()['val']['loss']
our = per_epoch_results['network']
our.plot(ax=ax, label='network')

ax.hlines(y=per_epoch_results['VAR'],
          xmin=0,
          xmax=len(our),
          color='red',
          label='VAR')
ax.hlines(y=per_epoch_results['1overN'],
示例#5
0
文件: iid.py 项目: zachmeador/deepdow
# Now it is time to train!

deep_portfolios_c = {}
deep_portfolios_u = {}

for mode in ['u', 'c']:
    for loss_name, loss in all_losses.items():
        network = Net(n_assets, max_weight=max_weight if mode == 'c' else 1.)
        run = Run(
            network,
            loss,
            dataloader,
            val_dataloaders={'train': dataloader},
            callbacks=[EarlyStoppingCallback('train', 'loss', patience=3)])

        run.launch(n_epochs=n_epochs)

        # Results
        w_pred = network(torch.ones(
            1,
            n_assets)).detach().numpy().squeeze()  # the input does not matter

        if mode == 'c':
            deep_portfolios_c[loss_name] = w_pred
        else:
            deep_portfolios_u[loss_name] = w_pred

# %%
# Unconstrained case:
plot_scatter(
    title='Ground truth vs empirical estimates vs deep learning: Unconstrained',
示例#6
0
# a simple wrapper :code:`Run` that implements the training loop and a minimal callback
# framework. For further information see :ref:`experiments`.

run = Run(network,
          loss,
          dataloader_train,
          val_dataloaders={'test': dataloader_test},
          optimizer=torch.optim.Adam(network.parameters(), amsgrad=True),
          callbacks=[
              EarlyStoppingCallback(metric_name='loss',
                                    dataloader_name='test',
                                    patience=15)
          ])
# %%
# To run the training loop, we use the :code:`launch` where we specify the number of epochs.
history = run.launch(30)

# %%
# Evaluation and visualization
# ^^^^^^^^^^^^^^^^^^^^^^^^^^^^
# The :code:`history` object returned by :code:`launch` contains a lot of useful information related
# to training. Specifically, the property :code:`metrics` returns a comprehensive :code:`pd.DataFrame`.
# To display the average test loss per each epoch we can run following.

per_epoch_results = history.metrics.groupby(
    ['dataloader', 'metric', 'model', 'epoch'])['value']

print(per_epoch_results.count())  # double check number of samples each epoch
print(per_epoch_results.mean())  # mean loss per epoch

# %%