def test_model_workflow_partial_mode():
    """Run the workflow of deep forest with a local buffer."""

    case_kwargs = copy.deepcopy(kwargs)
    case_kwargs.update({"partial_mode": True})

    model = CascadeForestRegressor(**case_kwargs)
    model.fit(X_train, y_train)

    # Predictions before saving
    y_pred_before = model.predict(X_test).astype(np.float32)

    # Save and Reload
    model.save(save_dir)

    model = CascadeForestRegressor(**case_kwargs)
    model.load(save_dir)

    # Predictions after loading
    y_pred_after = model.predict(X_test).astype(np.float32)

    # Make sure the same predictions before and after model serialization
    assert_array_equal(y_pred_before, y_pred_after)

    model.clean()  # clear the buffer
    shutil.rmtree(save_dir)
def test_regressor_custom_cascade_layer_workflow_in_memory(y_train):

    model = CascadeForestRegressor()

    n_estimators = 4
    estimators = [DecisionTreeRegressor() for _ in range(n_estimators)]
    model.set_estimator(estimators)  # set custom base estimators

    predictor = DecisionTreeRegressor()
    model.set_predictor(predictor)

    model.fit(X_train_reg, y_train)
    y_pred_before = model.predict(X_test_reg)

    # Save and Reload
    model.save(save_dir)

    model = CascadeForestRegressor()
    model.load(save_dir)

    # Predictions after loading
    y_pred_after = model.predict(X_test_reg)

    # Make sure the same predictions before and after model serialization
    assert_array_equal(y_pred_before, y_pred_after)

    assert (model.get_estimator(0, 0, "custom") is
            model._get_layer(0).estimators_["0-0-custom"].estimator_)

    model.clean()  # clear the buffer
    shutil.rmtree(save_dir)
示例#3
0
                partial_mode=partial_mode,
                delta=delta,
                n_jobs=n_jobs,
                random_state=random_state,
                verbose=verbose,
            )

            tic = time.time()
            model.fit(X_train, y_train)
            toc = time.time()
            training_time = toc - tic

            tic = time.time()
            y_pred = model.predict(X_test)
            toc = time.time()
            testing_time = toc - tic

            testing_mse = mean_squared_error(y_test, y_pred)
            records.append(
                (training_time, testing_time, testing_mse, len(model)))
            model.clean()

        # Writing
        with open("{}_deep_forest_regression.txt".format(dataset),
                  'w') as file:
            for training_time, testing_time, testing_mse, n_layers in records:
                string = "{:.5f}\t{:.5f}\t{:.5f}\t{}\n".format(
                    training_time, testing_time, testing_mse, n_layers)
                file.write(string)
            file.close()