示例#1
0
    def build_sub_graph(self, input_, num_layers=3):
        source = prev_input = input_

        mirror = False
        is_input = False
        if type(source) is ConstantNode:
            if type(source._op) is Tensor:
                if "input_" in source._op.tensor.name:
                    is_input = True
                    input_name = source._op.tensor.name
                    input_shape = tuple(source._op.tensor.shape[1:])
                    if self.shapes_to_vnodes.get(input_shape) is None:
                        self.shapes_to_vnodes[input_shape] = []
                    else:
                        mirror = True
                        memory = self.shapes_to_vnodes[input_shape][::-1]


        # look over skip connections within a range of the 3 previous nodes
        anchor_points = collections.deque([source], maxlen=3)
        for layer_i in range(num_layers):
            if not(mirror):
                vnode = VariableNode()
                self.add_dense_to_(vnode)
                if is_input:
                    self.shapes_to_vnodes[input_shape].append(vnode)
            else:
                vnode = MirrorNode(memory.pop())

            self.ss.connect(prev_input, vnode)

            # * Cell output
            prev_node = vnode
            if layer_i == num_layers-1:
                return prev_node

            cmerge = ConstantNode()
            cmerge.set_op(Concatenate(self.ss, [prev_node]))

            for anchor in anchor_points:

                if not(mirror):
                    skipco = VariableNode()
                    if is_input:
                        self.shapes_to_vnodes[input_shape].append(skipco)
                else:
                    skipco = MimeNode(memory.pop())

                skipco.add_op(Zero())
                skipco.add_op(Connect(self.ss, anchor))

                self.ss.connect(skipco, cmerge)

            prev_input = cmerge

            # ! for next iter
            anchor_points.append(prev_input)

        return prev_input
示例#2
0
def generate_cell(ss, hidden_states, num_blocks=5, strides=1, mime=False):
    anchor_points = [h for h in hidden_states]
    boutputs = []
    for _ in range(num_blocks):
        bout = generate_block(ss, anchor_points, strides=1, mime=mime)
        anchor_points.append(bout)
        boutputs.append(bout)

    concat = ConstantNode(op=Concatenate(ss, boutputs, not_connected=True))
    return concat
示例#3
0
def create_structure(input_shape=[(1, ), (942, ), (5270, ), (2048, )],
                     output_shape=(1, ),
                     num_cells=2,
                     *args,
                     **kwargs):
    struct = AutoKSearchSpace(input_shape, output_shape, regression=True)
    input_nodes = struct.input_nodes

    output_submodels = [input_nodes[0]]

    for i in range(1, 4):
        cnode1 = ConstantNode(name='N', op=Dense(1000, tf.nn.relu))
        struct.connect(input_nodes[i], cnode1)

        cnode2 = ConstantNode(name='N', op=Dense(1000, tf.nn.relu))
        struct.connect(cnode1, cnode2)

        vnode1 = VariableNode(name='N3')
        add_mlp_op_(vnode1)
        struct.connect(cnode2, vnode1)

        output_submodels.append(vnode1)

    merge1 = ConstantNode(name='Merge')
    # merge1.set_op(Concatenate(struct, merge1, output_submodels))
    merge1.set_op(Concatenate(struct, output_submodels))

    cnode4 = ConstantNode(name='N', op=Dense(1000, tf.nn.relu))
    struct.connect(merge1, cnode4)

    prev = cnode4

    for i in range(num_cells):
        cnode = ConstantNode(name='N', op=Dense(1000, tf.nn.relu))
        struct.connect(prev, cnode)

        merge = ConstantNode(name='Merge')
        # merge.set_op(AddByPadding(struct, merge, [cnode, prev]))
        merge.set_op(AddByPadding(struct, [cnode, prev]))

        prev = merge

    return struct
    def test_create_multiple_inputs_with_one_vnode(self):
        from deephyper.nas.space import KSearchSpace
        from deephyper.nas.space.node import VariableNode, ConstantNode
        from deephyper.nas.space.op.op1d import Dense
        from deephyper.nas.space.op.merge import Concatenate

        struct = KSearchSpace([(5, ), (5, )], (1, ))

        merge = ConstantNode()
        merge.set_op(Concatenate(struct, struct.input_nodes))

        vnode1 = VariableNode()
        struct.connect(merge, vnode1)

        vnode1.add_op(Dense(1))

        struct.set_ops([0])

        struct.create_model()
示例#5
0
def create_structure(input_shape=[(1, ), (942, ), (5270, ), (2048, )], output_shape=(1,), num_cells=2, *args, **kwargs):
    struct = AutoKSearchSpace(input_shape, output_shape, regression=True)
    input_nodes = struct.input_nodes

    output_submodels = [input_nodes[0]]

    for i in range(1, 4):
        vnode1 = VariableNode('N1')
        add_mlp_op_(vnode1)
        struct.connect(input_nodes[i], vnode1)

        vnode2 = VariableNode('N2')
        add_mlp_op_(vnode2)
        struct.connect(vnode1, vnode2)

        vnode3 = VariableNode('N3')
        add_mlp_op_(vnode3)
        struct.connect(vnode2, vnode3)

        output_submodels.append(vnode3)

    merge1 = ConstantNode(name='Merge', op=Concatenate(struct, output_submodels))
    # merge1.set_op(Concatenate(struct, merge1, output_submodels))

    vnode4 = VariableNode('N4')
    add_mlp_op_(vnode4)
    struct.connect(merge1, vnode4)

    prev = vnode4

    for i in range(num_cells):
        vnode = VariableNode(f'N{i+1}')
        add_mlp_op_(vnode)
        struct.connect(prev, vnode)

        merge = ConstantNode(name='Merge', op=AddByPadding(struct, [vnode, prev]))
        # merge.set_op()

        prev = merge


    return struct
示例#6
0
def generate_cell(ss,
                  hidden_states,
                  num_blocks=5,
                  strides=1,
                  mime=False,
                  num_filters=8):
    anchor_points = [h for h in hidden_states]
    boutputs = []
    for i in range(num_blocks):
        bout = generate_block(ss,
                              anchor_points,
                              strides=1,
                              mime=mime,
                              first=i == 0,
                              num_filters=num_filters)
        anchor_points.append(bout)
        boutputs.append(bout)

    concat = ConstantNode(op=Concatenate(ss, boutputs))
    return concat
示例#7
0
    def build(self, input_shape, output_shape, regression=True, **kwargs):
        ss = AutoKSearchSpace(input_shape, output_shape, regression=regression)

        if type(input_shape) is list:
            vnodes = []
            for i in range(len(input_shape)):
                vn = self.gen_vnode()
                vnodes.append(vn)
                ss.connect(ss.input_nodes[i], vn)

            cn = ConstantNode()
            cn.set_op(Concatenate(ss, vnodes))

            vn = self.gen_vnode()
            ss.connect(cn, vn)

        else:
            vnode1 = self.gen_vnode()
            ss.connect(ss.input_nodes[0], vnode1)

        return ss
示例#8
0
    def build(
        self,
        input_shape,
        output_shape,
        regression=True,
        num_layers=10,
        **kwargs,
    ):
        self.ss = AutoKSearchSpace(input_shape, output_shape, regression=regression)
        self.shapes_to_vnodes = {}

        sub_graphs_outputs = []

        for input_ in self.ss.input_nodes:
            output_sub_graph = self.build_sub_graph(input_)
            sub_graphs_outputs.append(output_sub_graph)

        cmerge = ConstantNode()
        cmerge.set_op(Concatenate(self.ss, sub_graphs_outputs))

        output_sub_graph = self.build_sub_graph(cmerge)

        return self.ss