y.append(out_y) name = image_name + "_{}_{}".format(i, j) names.append(name) if out_dir is not None: Image.fromarray(out_x).save( os.path.join(out_dir, name + ".png")) return x, y, names x_paths = glob(os.path.join(train_dir, "*.png")) x_paths.sort() y_paths = glob(os.path.join(train_dir, "*.json")) y_paths.sort() label_file_path = os.path.join(train_dir, 'label.csv') label = Label(label_file_path) n_data = len(x_paths) x = [] y = [] names = [] for i in tqdm(range(n_data)): x_path = x_paths[i] y_path = y_paths[i] _x, _y, _names = make_cut_xy_h5( x_path, y_path, data_type="polygon", out_image_size=(512, 512), label=label, # out_dir="../../data/train_data_256"
valid_extra_x_dirs = conf.get("valid_extra_x_dirs", None) valid_y_dirs = conf["valid_y_dirs"] batch_size = conf["batch_size"] n_epochs = conf["n_epochs"] output_activation = conf["output_activation"] image_size = conf["image_size"] loss = conf["loss"] optimizer = conf["optimizer"] metrics = conf["metrics"] check_categorical_metrics = conf.get("check_categorical_metrics", "True") class_weight = conf.get("class_weight", None) use_tensorboard = conf.get("use_tensorboard", False) use_batch_renorm = conf.get("use_batch_renorm", False) label = Label(label_file_path) if class_weight is not None: label.add_class_weight(class_weight) hists_old = pd.read_csv(os.path.join(model_dir, "training_log.csv")) initial_epoch = len(hists_old) n_gpus = len(use_devices.split(',')) batch_size = batch_size * n_gpus preprocess = keras.applications.xception.preprocess_input # make train dataset train_dataset, train_path_list = make_dataset( train_x_dirs, image_size,