def form_default_inferencecfg(cfg): # load defaults inferencecfg = auxiliaryfunctions.read_plainconfig( os.path.join(auxiliaryfunctions.get_deeplabcut_path(), "inference_cfg.yaml")) # set project specific parameters: inferencecfg["minimalnumberofconnections"] = ( len(cfg["multianimalbodyparts"]) / 2) # reasonable default inferencecfg["topktoretain"] = len(cfg["individuals"]) + 1 * ( len(cfg["uniquebodyparts"]) > 0) # reasonable default return inferencecfg
def DownloadModel(modelname, target_dir): """ Downloads a DeepLabCut Model Zoo Project """ import urllib.request import tarfile from tqdm import tqdm def show_progress(count, block_size, total_size): pbar.update(block_size) def tarfilenamecutting(tarf): """' auxfun to extract folder path ie. /xyz-trainsetxyshufflez/ """ for memberid, member in enumerate(tarf.getmembers()): if memberid == 0: parent = str(member.path) l = len(parent) + 1 if member.path.startswith(parent): member.path = member.path[l:] yield member dlc_path = auxiliaryfunctions.get_deeplabcut_path() neturls = auxiliaryfunctions.read_plainconfig( os.path.join( dlc_path, "pose_estimation_tensorflow", "models", "pretrained", "pretrained_model_urls.yaml", ) ) if modelname in neturls.keys(): url = neturls[modelname] response = urllib.request.urlopen(url) print( "Downloading the model from the DeepLabCut server @Harvard -> Go Crimson!!! {}....".format( url ) ) total_size = int(response.getheader("Content-Length")) pbar = tqdm(unit="B", total=total_size, position=0) filename, _ = urllib.request.urlretrieve(url, reporthook=show_progress) with tarfile.open(filename, mode="r:gz") as tar: tar.extractall(target_dir, members=tarfilenamecutting(tar)) else: models = [ fn for fn in neturls.keys() if "resnet_" not in fn and "mobilenet_" not in fn ] print("Model does not exist: ", modelname) print("Pick one of the following: ", models)
def __init__(self): super(MainFrame, self).__init__("DeepLabCut") self.statusbar.SetStatusText("www.deeplabcut.org") dlcparent_path = auxiliaryfunctions.get_deeplabcut_path() media_path = os.path.join(dlcparent_path, "gui", "media") logo = os.path.join(media_path, "logo.png") self.SetIcon(wx.Icon(logo)) # Here we create a panel and a notebook on the panel self.panel = wx.Panel(self) self.nb = wx.Notebook(self.panel) # create the page windows as children of the notebook and add the pages to the notebook with the label to show on the tab page1 = Welcome(self.nb, self.gui_size) self.nb.AddPage(page1, "Welcome") page2 = Create_new_project(self.nb, self.gui_size) self.nb.AddPage(page2, "Manage Project") self.sizer = wx.BoxSizer() self.sizer.Add(self.nb, 1, wx.EXPAND) self.panel.SetSizer(self.sizer)
def __init__(self): displays = ( wx.Display(i) for i in range(wx.Display.GetCount()) ) # Gets the number of displays screenSizes = [ display.GetGeometry().GetSize() for display in displays ] # Gets the size of each display index = 0 # For display 1. screenWidth = screenSizes[index][0] screenHeight = screenSizes[index][1] self.gui_size = (screenWidth * 0.7, screenHeight * 0.55) wx.Frame.__init__( self, None, wx.ID_ANY, "DeepLabCut", size=wx.Size(self.gui_size), pos=wx.DefaultPosition, style=wx.RESIZE_BORDER | wx.DEFAULT_FRAME_STYLE | wx.TAB_TRAVERSAL, ) dlcparent_path = auxiliaryfunctions.get_deeplabcut_path() media_path = os.path.join(dlcparent_path, "gui", "media") logo = os.path.join(media_path, "logo.png") self.SetIcon(wx.Icon(logo)) self.SetSizeHints( wx.Size(self.gui_size) ) # This sets the minimum size of the GUI. It can scale now! # Here we create a panel and a notebook on the panel self.panel = wx.Panel(self) self.nb = wx.Notebook(self.panel) # create the page windows as children of the notebook and add the pages to the notebook with the label to show on the tab page1 = Welcome(self.nb, self.gui_size) self.nb.AddPage(page1, "Welcome") page2 = Create_new_project(self.nb, self.gui_size) self.nb.AddPage(page2, "Manage Project") self.sizer = wx.BoxSizer() self.sizer.Add(self.nb, 1, wx.EXPAND) self.panel.SetSizer(self.sizer)
def create_training_dataset( config, num_shuffles=1, Shuffles=None, windows2linux=False, userfeedback=False, trainIndices=None, testIndices=None, net_type=None, augmenter_type=None, ): """ Creates a training dataset. Labels from all the extracted frames are merged into a single .h5 file.\n Only the videos included in the config file are used to create this dataset.\n [OPTIONAL] Use the function 'add_new_video' at any stage of the project to add more videos to the project. Parameter ---------- config : string Full path of the config.yaml file as a string. num_shuffles : int, optional Number of shuffles of training dataset to create, i.e. [1,2,3] for num_shuffles=3. Default is set to 1. Shuffles: list of shuffles. Alternatively the user can also give a list of shuffles (integers!). windows2linux: bool. The annotation files contain path formated according to your operating system. If you label on windows but train & evaluate on a unix system (e.g. ubunt, colab, Mac) set this variable to True to convert the paths. userfeedback: bool, optional If this is set to false, then all requested train/test splits are created (no matter if they already exist). If you want to assure that previous splits etc. are not overwritten, then set this to True and you will be asked for each split. trainIndices: list of lists, optional (default=None) List of one or multiple lists containing train indexes. A list containing two lists of training indexes will produce two splits. testIndices: list of lists, optional (default=None) List of one or multiple lists containing test indexes. net_type: string Type of networks. Currently resnet_50, resnet_101, resnet_152, mobilenet_v2_1.0,mobilenet_v2_0.75, mobilenet_v2_0.5, and mobilenet_v2_0.35 are supported. augmenter_type: string Type of augmenter. Currently default, imgaug, tensorpack, and deterministic are supported. Example -------- >>> deeplabcut.create_training_dataset('/analysis/project/reaching-task/config.yaml',num_shuffles=1) Windows: >>> deeplabcut.create_training_dataset('C:\\Users\\Ulf\\looming-task\\config.yaml',Shuffles=[3,17,5]) -------- """ import scipy.io as sio # Loading metadata from config file: cfg = auxiliaryfunctions.read_config(config) if cfg.get("multianimalproject", False): from deeplabcut.generate_training_dataset.multiple_individuals_trainingsetmanipulation import ( create_multianimaltraining_dataset, ) create_multianimaltraining_dataset(config, num_shuffles, Shuffles, windows2linux, net_type) else: scorer = cfg["scorer"] project_path = cfg["project_path"] # Create path for training sets & store data there trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder( cfg) # Path concatenation OS platform independent auxiliaryfunctions.attempttomakefolder(Path( os.path.join(project_path, str(trainingsetfolder))), recursive=True) Data = merge_annotateddatasets( cfg, Path(os.path.join(project_path, trainingsetfolder)), windows2linux) if Data is None: return Data = Data[scorer] # extract labeled data # loading & linking pretrained models if net_type is None: # loading & linking pretrained models net_type = cfg.get("default_net_type", "resnet_50") else: if "resnet" in net_type or "mobilenet" in net_type: pass else: raise ValueError("Invalid network type:", net_type) if augmenter_type is None: augmenter_type = cfg.get("default_augmenter", "imgaug") if augmenter_type is None: # this could be in config.yaml for old projects! # updating variable if null/None! #backwardscompatability auxiliaryfunctions.edit_config(config, {"default_augmenter": "imgaug"}) augmenter_type = "imgaug" else: if augmenter_type in [ "default", "scalecrop", "imgaug", "tensorpack", "deterministic", ]: pass else: raise ValueError("Invalid augmenter type:", augmenter_type) # Loading the encoder (if necessary downloading from TF) dlcparent_path = auxiliaryfunctions.get_deeplabcut_path() defaultconfigfile = os.path.join(dlcparent_path, "pose_cfg.yaml") model_path, num_shuffles = auxfun_models.Check4weights( net_type, Path(dlcparent_path), num_shuffles) if Shuffles is None: Shuffles = range(1, num_shuffles + 1) else: Shuffles = [i for i in Shuffles if isinstance(i, int)] # print(trainIndices,testIndices, Shuffles, augmenter_type,net_type) if trainIndices is None and testIndices is None: splits = [( trainFraction, shuffle, SplitTrials(range(len(Data.index)), trainFraction), ) for trainFraction in cfg["TrainingFraction"] for shuffle in Shuffles] else: if len(trainIndices) != len(testIndices) != len(Shuffles): raise ValueError( "Number of Shuffles and train and test indexes should be equal." ) splits = [] for shuffle, (train_inds, test_inds) in enumerate( zip(trainIndices, testIndices)): trainFraction = round( len(train_inds) * 1.0 / (len(train_inds) + len(test_inds)), 2) print( f"You passed a split with the following fraction: {int(100 * trainFraction)}%" ) splits.append((trainFraction, Shuffles[shuffle], (train_inds, test_inds))) bodyparts = cfg["bodyparts"] nbodyparts = len(bodyparts) for trainFraction, shuffle, (trainIndices, testIndices) in splits: if len(trainIndices) > 0: if userfeedback: trainposeconfigfile, _, _ = training.return_train_network_path( config, shuffle=shuffle, trainingsetindex=cfg["TrainingFraction"].index( trainFraction), ) if trainposeconfigfile.is_file(): askuser = input( "The model folder is already present. If you continue, it will overwrite the existing model (split). Do you want to continue?(yes/no): " ) if (askuser == "no" or askuser == "No" or askuser == "N" or askuser == "No"): raise Exception( "Use the Shuffles argument as a list to specify a different shuffle index. Check out the help for more details." ) #################################################### # Generating data structure with labeled information & frame metadata (for deep cut) #################################################### # Make training file! ( datafilename, metadatafilename, ) = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) ################################################################################ # Saving data file (convert to training file for deeper cut (*.mat)) ################################################################################ data, MatlabData = format_training_data( Data, trainIndices, nbodyparts, project_path) sio.savemat(os.path.join(project_path, datafilename), {"dataset": MatlabData}) ################################################################################ # Saving metadata (Pickle file) ################################################################################ auxiliaryfunctions.SaveMetadata( os.path.join(project_path, metadatafilename), data, trainIndices, testIndices, trainFraction, ) ################################################################################ # Creating file structure for training & # Test files as well as pose_yaml files (containing training and testing information) ################################################################################# modelfoldername = auxiliaryfunctions.GetModelFolder( trainFraction, shuffle, cfg) auxiliaryfunctions.attempttomakefolder( Path(config).parents[0] / modelfoldername, recursive=True) auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername) + "/train") auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername) + "/test") path_train_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "train", "pose_cfg.yaml", )) path_test_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "test", "pose_cfg.yaml", )) # str(cfg['proj_path']+'/'+Path(modelfoldername) / 'test' / 'pose_cfg.yaml') items2change = { "dataset": datafilename, "metadataset": metadatafilename, "num_joints": len(bodyparts), "all_joints": [[i] for i in range(len(bodyparts))], "all_joints_names": [str(bpt) for bpt in bodyparts], "init_weights": model_path, "project_path": str(cfg["project_path"]), "net_type": net_type, "dataset_type": augmenter_type, } items2drop = {} if augmenter_type == "scalecrop": # these values are dropped as scalecrop # doesn't have rotation implemented items2drop = {"rotation": 0, "rotratio": 0.0} trainingdata = MakeTrain_pose_yaml(items2change, path_train_config, defaultconfigfile, items2drop) keys2save = [ "dataset", "num_joints", "all_joints", "all_joints_names", "net_type", "init_weights", "global_scale", "location_refinement", "locref_stdev", ] MakeTest_pose_yaml(trainingdata, keys2save, path_test_config) print( "The training dataset is successfully created. Use the function 'train_network' to start training. Happy training!" ) return splits
def create_multianimaltraining_dataset( config, num_shuffles=1, Shuffles=None, windows2linux=False, net_type=None, numdigits=2, crop_size=(400, 400), crop_sampling="hybrid", paf_graph=None, trainIndices=None, testIndices=None, ): """ Creates a training dataset for multi-animal datasets. Labels from all the extracted frames are merged into a single .h5 file.\n Only the videos included in the config file are used to create this dataset.\n [OPTIONAL] Use the function 'add_new_video' at any stage of the project to add more videos to the project. Imporant differences to standard: - stores coordinates with numdigits as many digits - creates Parameter ---------- config : string Full path of the config.yaml file as a string. num_shuffles : int, optional Number of shuffles of training dataset to create, i.e. [1,2,3] for num_shuffles=3. Default is set to 1. Shuffles: list of shuffles. Alternatively the user can also give a list of shuffles (integers!). net_type: string Type of networks. Currently resnet_50, resnet_101, and resnet_152, efficientnet-b0, efficientnet-b1, efficientnet-b2, efficientnet-b3, efficientnet-b4, efficientnet-b5, and efficientnet-b6 as well as dlcrnet_ms5 are supported (not the MobileNets!). See Lauer et al. 2021 https://www.biorxiv.org/content/10.1101/2021.04.30.442096v1 numdigits: int, optional crop_size: tuple of int, optional Dimensions (width, height) of the crops for data augmentation. Default is 400x400. crop_sampling: str, optional Crop centers sampling method. Must be either: "uniform" (randomly over the image), "keypoints" (randomly over the annotated keypoints), "density" (weighing preferentially dense regions of keypoints), or "hybrid" (alternating randomly between "uniform" and "density"). Default is "hybrid". paf_graph: list of lists, optional (default=None) If not None, overwrite the default complete graph. This is useful for advanced users who already know a good graph, or simply want to use a specific one. Note that, in that case, the data-driven selection procedure upon model evaluation will be skipped. trainIndices: list of lists, optional (default=None) List of one or multiple lists containing train indexes. A list containing two lists of training indexes will produce two splits. testIndices: list of lists, optional (default=None) List of one or multiple lists containing test indexes. Example -------- >>> deeplabcut.create_multianimaltraining_dataset('/analysis/project/reaching-task/config.yaml',num_shuffles=1) >>> deeplabcut.create_multianimaltraining_dataset('/analysis/project/reaching-task/config.yaml', Shuffles=[0,1,2], trainIndices=[trainInd1, trainInd2, trainInd3], testIndices=[testInd1, testInd2, testInd3]) Windows: >>> deeplabcut.create_multianimaltraining_dataset(r'C:\\Users\\Ulf\\looming-task\\config.yaml',Shuffles=[3,17,5]) -------- """ if windows2linux: warnings.warn( "`windows2linux` has no effect since 2.2.0.4 and will be removed in 2.2.1.", FutureWarning, ) if len(crop_size) != 2 or not all(isinstance(v, int) for v in crop_size): raise ValueError( "Crop size must be a tuple of two integers (width, height).") if crop_sampling not in ("uniform", "keypoints", "density", "hybrid"): raise ValueError( f"Invalid sampling {crop_sampling}. Must be " f"either 'uniform', 'keypoints', 'density', or 'hybrid.") # Loading metadata from config file: cfg = auxiliaryfunctions.read_config(config) scorer = cfg["scorer"] project_path = cfg["project_path"] # Create path for training sets & store data there trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) full_training_path = Path(project_path, trainingsetfolder) auxiliaryfunctions.attempttomakefolder(full_training_path, recursive=True) Data = merge_annotateddatasets(cfg, full_training_path) if Data is None: return Data = Data[scorer] if net_type is None: # loading & linking pretrained models net_type = cfg.get("default_net_type", "dlcrnet_ms5") elif not any(net in net_type for net in ("resnet", "eff", "dlc", "mob")): raise ValueError(f"Unsupported network {net_type}.") multi_stage = False ### dlcnet_ms5: backbone resnet50 + multi-fusion & multi-stage module ### dlcr101_ms5/dlcr152_ms5: backbone resnet101/152 + multi-fusion & multi-stage module if all(net in net_type for net in ("dlcr", "_ms5")): num_layers = re.findall("dlcr([0-9]*)", net_type)[0] if num_layers == "": num_layers = 50 net_type = "resnet_{}".format(num_layers) multi_stage = True dataset_type = "multi-animal-imgaug" ( individuals, uniquebodyparts, multianimalbodyparts, ) = auxfun_multianimal.extractindividualsandbodyparts(cfg) if paf_graph is None: # Automatically form a complete PAF graph partaffinityfield_graph = [ list(edge) for edge in combinations(range(len(multianimalbodyparts)), 2) ] else: # Ignore possible connections between 'multi' and 'unique' body parts; # one can never be too careful... to_ignore = auxfun_multianimal.filter_unwanted_paf_connections( cfg, paf_graph) partaffinityfield_graph = [ edge for i, edge in enumerate(paf_graph) if i not in to_ignore ] auxfun_multianimal.validate_paf_graph(cfg, partaffinityfield_graph) print("Utilizing the following graph:", partaffinityfield_graph) # Disable the prediction of PAFs if the graph is empty partaffinityfield_predict = bool(partaffinityfield_graph) # Loading the encoder (if necessary downloading from TF) dlcparent_path = auxiliaryfunctions.get_deeplabcut_path() defaultconfigfile = os.path.join(dlcparent_path, "pose_cfg.yaml") model_path, num_shuffles = auxfun_models.Check4weights( net_type, Path(dlcparent_path), num_shuffles) if Shuffles is None: Shuffles = range(1, num_shuffles + 1, 1) else: Shuffles = [i for i in Shuffles if isinstance(i, int)] # print(trainIndices,testIndices, Shuffles, augmenter_type,net_type) if trainIndices is None and testIndices is None: splits = [] for shuffle in Shuffles: # Creating shuffles starting from 1 for train_frac in cfg["TrainingFraction"]: train_inds, test_inds = SplitTrials(range(len(Data)), train_frac) splits.append((train_frac, shuffle, (train_inds, test_inds))) else: if len(trainIndices) != len(testIndices) != len(Shuffles): raise ValueError( "Number of Shuffles and train and test indexes should be equal." ) splits = [] for shuffle, (train_inds, test_inds) in enumerate(zip(trainIndices, testIndices)): trainFraction = round( len(train_inds) * 1.0 / (len(train_inds) + len(test_inds)), 2) print( f"You passed a split with the following fraction: {int(100 * trainFraction)}%" ) # Now that the training fraction is guaranteed to be correct, # the values added to pad the indices are removed. train_inds = np.asarray(train_inds) train_inds = train_inds[train_inds != -1] test_inds = np.asarray(test_inds) test_inds = test_inds[test_inds != -1] splits.append( (trainFraction, Shuffles[shuffle], (train_inds, test_inds))) for trainFraction, shuffle, (trainIndices, testIndices) in splits: #################################################### # Generating data structure with labeled information & frame metadata (for deep cut) #################################################### print( "Creating training data for: Shuffle:", shuffle, "TrainFraction: ", trainFraction, ) # Make training file! data = format_multianimal_training_data( Data, trainIndices, cfg["project_path"], numdigits, ) if len(trainIndices) > 0: ( datafilename, metadatafilename, ) = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) ################################################################################ # Saving metadata and data file (Pickle file) ################################################################################ auxiliaryfunctions.SaveMetadata( os.path.join(project_path, metadatafilename), data, trainIndices, testIndices, trainFraction, ) datafilename = datafilename.split(".mat")[0] + ".pickle" import pickle with open(os.path.join(project_path, datafilename), "wb") as f: # Pickle the 'labeled-data' dictionary using the highest protocol available. pickle.dump(data, f, pickle.HIGHEST_PROTOCOL) ################################################################################ # Creating file structure for training & # Test files as well as pose_yaml files (containing training and testing information) ################################################################################# modelfoldername = auxiliaryfunctions.GetModelFolder( trainFraction, shuffle, cfg) auxiliaryfunctions.attempttomakefolder(Path(config).parents[0] / modelfoldername, recursive=True) auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername / "train")) auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername / "test")) path_train_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "train", "pose_cfg.yaml", )) path_test_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "test", "pose_cfg.yaml", )) path_inference_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "test", "inference_cfg.yaml", )) jointnames = [str(bpt) for bpt in multianimalbodyparts] jointnames.extend([str(bpt) for bpt in uniquebodyparts]) items2change = { "dataset": datafilename, "metadataset": metadatafilename, "num_joints": len(multianimalbodyparts) + len(uniquebodyparts), # cfg["uniquebodyparts"]), "all_joints": [[i] for i in range( len(multianimalbodyparts) + len(uniquebodyparts)) ], # cfg["uniquebodyparts"]))], "all_joints_names": jointnames, "init_weights": model_path, "project_path": str(cfg["project_path"]), "net_type": net_type, "multi_stage": multi_stage, "pairwise_loss_weight": 0.1, "pafwidth": 20, "partaffinityfield_graph": partaffinityfield_graph, "partaffinityfield_predict": partaffinityfield_predict, "weigh_only_present_joints": False, "num_limbs": len(partaffinityfield_graph), "dataset_type": dataset_type, "optimizer": "adam", "batch_size": 8, "multi_step": [[1e-4, 7500], [5 * 1e-5, 12000], [1e-5, 200000]], "save_iters": 10000, "display_iters": 500, "num_idchannel": len(cfg["individuals"]) if cfg.get("identity", False) else 0, "crop_size": list(crop_size), "crop_sampling": crop_sampling, } trainingdata = MakeTrain_pose_yaml(items2change, path_train_config, defaultconfigfile) keys2save = [ "dataset", "num_joints", "all_joints", "all_joints_names", "net_type", "multi_stage", "init_weights", "global_scale", "location_refinement", "locref_stdev", "dataset_type", "partaffinityfield_predict", "pairwise_predict", "partaffinityfield_graph", "num_limbs", "dataset_type", "num_idchannel", ] MakeTest_pose_yaml( trainingdata, keys2save, path_test_config, nmsradius=5.0, minconfidence=0.01, sigma=1, locref_smooth=False, ) # setting important def. values for inference # Setting inference cfg file: defaultinference_configfile = os.path.join(dlcparent_path, "inference_cfg.yaml") items2change = { "minimalnumberofconnections": int(len(cfg["multianimalbodyparts"]) / 2), "topktoretain": len(cfg["individuals"]) + 1 * (len(cfg["uniquebodyparts"]) > 0), "withid": cfg.get("identity", False), } MakeInference_yaml(items2change, path_inference_config, defaultinference_configfile) print( "The training dataset is successfully created. Use the function 'train_network' to start training. Happy training!" ) else: pass
def create_multianimaltraining_dataset( config, num_shuffles=1, Shuffles=None, windows2linux=False, net_type=None, numdigits=2, paf_graph=None, ): """ Creates a training dataset for multi-animal datasets. Labels from all the extracted frames are merged into a single .h5 file.\n Only the videos included in the config file are used to create this dataset.\n [OPTIONAL] Use the function 'add_new_video' at any stage of the project to add more videos to the project. Imporant differences to standard: - stores coordinates with numdigits as many digits - creates Parameter ---------- config : string Full path of the config.yaml file as a string. num_shuffles : int, optional Number of shuffles of training dataset to create, i.e. [1,2,3] for num_shuffles=3. Default is set to 1. Shuffles: list of shuffles. Alternatively the user can also give a list of shuffles (integers!). windows2linux: bool. The annotation files contain path formated according to your operating system. If you label on windows but train & evaluate on a unix system (e.g. ubunt, colab, Mac) set this variable to True to convert the paths. net_type: string Type of networks. Currently resnet_50, resnet_101, and resnet_152, efficientnet-b0, efficientnet-b1, efficientnet-b2, efficientnet-b3, efficientnet-b4, efficientnet-b5, and efficientnet-b6 as well as dlcrnet_ms5 are supported (not the MobileNets!). See Lauer et al. 2021 https://www.biorxiv.org/content/10.1101/2021.04.30.442096v1 numdigits: int, optional paf_graph: list of lists, optional (default=None) If not None, overwrite the default complete graph. This is useful for advanced users who already know a good graph, or simply want to use a specific one. Note that, in that case, the data-driven selection procedure upon model evaluation will be skipped. Example -------- >>> deeplabcut.create_multianimaltraining_dataset('/analysis/project/reaching-task/config.yaml',num_shuffles=1) Windows: >>> deeplabcut.create_multianimaltraining_dataset(r'C:\\Users\\Ulf\\looming-task\\config.yaml',Shuffles=[3,17,5]) -------- """ # Loading metadata from config file: cfg = auxiliaryfunctions.read_config(config) scorer = cfg["scorer"] project_path = cfg["project_path"] # Create path for training sets & store data there trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder(cfg) full_training_path = Path(project_path, trainingsetfolder) auxiliaryfunctions.attempttomakefolder(full_training_path, recursive=True) Data = merge_annotateddatasets(cfg, full_training_path, windows2linux) if Data is None: return Data = Data[scorer] def strip_cropped_image_name(path): # utility function to split different crops from same image into either train or test! head, filename = os.path.split(path) if cfg["croppedtraining"]: filename = filename.split("c")[0] return os.path.join(head, filename) img_names = Data.index.map(strip_cropped_image_name).unique() if net_type is None: # loading & linking pretrained models net_type = cfg.get("default_net_type", "dlcrnet_ms5") elif not any(net in net_type for net in ("resnet", "eff", "dlc")): raise ValueError(f"Unsupported network {net_type}.") multi_stage = False if net_type == "dlcrnet_ms5": net_type = "resnet_50" multi_stage = True dataset_type = "multi-animal-imgaug" ( individuals, uniquebodyparts, multianimalbodyparts, ) = auxfun_multianimal.extractindividualsandbodyparts(cfg) if paf_graph is None: # Automatically form a complete PAF graph partaffinityfield_graph = [ list(edge) for edge in combinations(range(len(multianimalbodyparts)), 2) ] else: # Ignore possible connections between 'multi' and 'unique' body parts; # one can never be too careful... to_ignore = auxfun_multianimal.filter_unwanted_paf_connections( cfg, paf_graph) partaffinityfield_graph = [ edge for i, edge in enumerate(paf_graph) if i not in to_ignore ] auxfun_multianimal.validate_paf_graph(cfg, partaffinityfield_graph) print("Utilizing the following graph:", partaffinityfield_graph) partaffinityfield_predict = True # Loading the encoder (if necessary downloading from TF) dlcparent_path = auxiliaryfunctions.get_deeplabcut_path() defaultconfigfile = os.path.join(dlcparent_path, "pose_cfg.yaml") model_path, num_shuffles = auxfun_models.Check4weights( net_type, Path(dlcparent_path), num_shuffles) if Shuffles is None: Shuffles = range(1, num_shuffles + 1, 1) else: Shuffles = [i for i in Shuffles if isinstance(i, int)] TrainingFraction = cfg["TrainingFraction"] for shuffle in Shuffles: # Creating shuffles starting from 1 for trainFraction in TrainingFraction: train_inds_temp, test_inds_temp = SplitTrials( range(len(img_names)), trainFraction) # Map back to the original indices. temp = [ re.escape(name) for i, name in enumerate(img_names) if i in test_inds_temp ] mask = Data.index.str.contains("|".join(temp)) testIndices = np.flatnonzero(mask) trainIndices = np.flatnonzero(~mask) #################################################### # Generating data structure with labeled information & frame metadata (for deep cut) #################################################### print( "Creating training data for: Shuffle:", shuffle, "TrainFraction: ", trainFraction, ) # Make training file! data = format_multianimal_training_data( Data, trainIndices, cfg["project_path"], numdigits, ) if len(trainIndices) > 0: ( datafilename, metadatafilename, ) = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) ################################################################################ # Saving metadata and data file (Pickle file) ################################################################################ auxiliaryfunctions.SaveMetadata( os.path.join(project_path, metadatafilename), data, trainIndices, testIndices, trainFraction, ) datafilename = datafilename.split(".mat")[0] + ".pickle" import pickle with open(os.path.join(project_path, datafilename), "wb") as f: # Pickle the 'labeled-data' dictionary using the highest protocol available. pickle.dump(data, f, pickle.HIGHEST_PROTOCOL) ################################################################################ # Creating file structure for training & # Test files as well as pose_yaml files (containing training and testing information) ################################################################################# modelfoldername = auxiliaryfunctions.GetModelFolder( trainFraction, shuffle, cfg) auxiliaryfunctions.attempttomakefolder( Path(config).parents[0] / modelfoldername, recursive=True) auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername / "train")) auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername / "test")) path_train_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "train", "pose_cfg.yaml", )) path_test_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "test", "pose_cfg.yaml", )) path_inference_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "test", "inference_cfg.yaml", )) jointnames = [str(bpt) for bpt in multianimalbodyparts] jointnames.extend([str(bpt) for bpt in uniquebodyparts]) items2change = { "dataset": datafilename, "metadataset": metadatafilename, "num_joints": len(multianimalbodyparts) + len(uniquebodyparts), # cfg["uniquebodyparts"]), "all_joints": [[i] for i in range( len(multianimalbodyparts) + len(uniquebodyparts)) ], # cfg["uniquebodyparts"]))], "all_joints_names": jointnames, "init_weights": model_path, "project_path": str(cfg["project_path"]), "net_type": net_type, "multi_stage": multi_stage, "pairwise_loss_weight": 0.1, "pafwidth": 20, "partaffinityfield_graph": partaffinityfield_graph, "partaffinityfield_predict": partaffinityfield_predict, "weigh_only_present_joints": False, "num_limbs": len(partaffinityfield_graph), "dataset_type": dataset_type, "optimizer": "adam", "batch_size": 8, "multi_step": [[1e-4, 7500], [5 * 1e-5, 12000], [1e-5, 200000]], "save_iters": 10000, "display_iters": 500, "num_idchannel": len(cfg["individuals"]) if cfg.get("identity", False) else 0, } trainingdata = MakeTrain_pose_yaml(items2change, path_train_config, defaultconfigfile) keys2save = [ "dataset", "num_joints", "all_joints", "all_joints_names", "net_type", "multi_stage", "init_weights", "global_scale", "location_refinement", "locref_stdev", "dataset_type", "partaffinityfield_predict", "pairwise_predict", "partaffinityfield_graph", "num_limbs", "dataset_type", "num_idchannel", ] MakeTest_pose_yaml( trainingdata, keys2save, path_test_config, nmsradius=5.0, minconfidence=0.01, ) # setting important def. values for inference # Setting inference cfg file: defaultinference_configfile = os.path.join( dlcparent_path, "inference_cfg.yaml") items2change = { "minimalnumberofconnections": int(len(cfg["multianimalbodyparts"]) / 2), "topktoretain": len(cfg["individuals"]) + 1 * (len(cfg["uniquebodyparts"]) > 0), "withid": cfg.get("identity", False), } MakeInference_yaml(items2change, path_inference_config, defaultinference_configfile) print( "The training dataset is successfully created. Use the function 'train_network' to start training. Happy training!" ) else: pass
""" DeepLabCut2.0 Toolbox (deeplabcut.org) © A. & M. Mathis Labs https://github.com/DeepLabCut/DeepLabCut Please see AUTHORS for contributors. https://github.com/DeepLabCut/DeepLabCut/blob/master/AUTHORS Licensed under GNU Lesser General Public License v3.0 """ import os from deeplabcut.utils.auxiliaryfunctions import get_deeplabcut_path DLC_PATH = get_deeplabcut_path() MEDIA_PATH = os.path.join(DLC_PATH, "gui", "media") LOGO_PATH = os.path.join(MEDIA_PATH, "logo.png")
def create_multianimaltraining_dataset( config, num_shuffles=1, Shuffles=None, windows2linux=False, net_type=None, numdigits=2, ): """ Creates a training dataset for multi-animal datasets. Labels from all the extracted frames are merged into a single .h5 file.\n Only the videos included in the config file are used to create this dataset.\n [OPTIONAL] Use the function 'add_new_video' at any stage of the project to add more videos to the project. Imporant differences to standard: - stores coordinates with numdigits as many digits - creates Parameter ---------- config : string Full path of the config.yaml file as a string. num_shuffles : int, optional Number of shuffles of training dataset to create, i.e. [1,2,3] for num_shuffles=3. Default is set to 1. Shuffles: list of shuffles. Alternatively the user can also give a list of shuffles (integers!). windows2linux: bool. The annotation files contain path formated according to your operating system. If you label on windows but train & evaluate on a unix system (e.g. ubunt, colab, Mac) set this variable to True to convert the paths. net_type: string Type of networks. Currently resnet_50, resnet_101, and resnet_152 are supported (not the MobileNets!) numdigits: int, optional Example -------- >>> deeplabcut.create_multianimaltraining_dataset('/analysis/project/reaching-task/config.yaml',num_shuffles=1) Windows: >>> deeplabcut.create_multianimaltraining_dataset(r'C:\\Users\\Ulf\\looming-task\\config.yaml',Shuffles=[3,17,5]) -------- """ from skimage import io # Loading metadata from config file: cfg = auxiliaryfunctions.read_config(config) scorer = cfg["scorer"] project_path = cfg["project_path"] # Create path for training sets & store data there trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder( cfg) # Path concatenatn OS platform independent auxiliaryfunctions.attempttomakefolder(Path( os.path.join(project_path, str(trainingsetfolder))), recursive=True) Data = trainingsetmanipulation.merge_annotateddatasets( cfg, Path(os.path.join(project_path, trainingsetfolder)), windows2linux) if Data is None: return Data = Data[scorer] # extract labeled data # actualbpts=set(Data.columns.get_level_values(0)) def strip_cropped_image_name(path): # utility function to split different crops from same image into either train or test! filename = os.path.split(path)[1] return filename.split("c")[0] img_names = Data.index.map(strip_cropped_image_name).unique() # loading & linking pretrained models # CURRENTLY ONLY ResNet supported! if net_type is None: # loading & linking pretrained models net_type = cfg.get("default_net_type", "resnet_50") else: if "resnet" in net_type: # or 'mobilenet' in net_type: pass else: raise ValueError("Currently only resnet is supported.") # multianimal case: dataset_type = "multi-animal-imgaug" partaffinityfield_graph = auxfun_multianimal.getpafgraph(cfg, printnames=False) # ATTENTION: order has to be multibodyparts, then uniquebodyparts (for indexing) print("Utilizing the following graph:", partaffinityfield_graph) num_limbs = len(partaffinityfield_graph) partaffinityfield_predict = True # Loading the encoder (if necessary downloading from TF) dlcparent_path = auxiliaryfunctions.get_deeplabcut_path() defaultconfigfile = os.path.join(dlcparent_path, "pose_cfg.yaml") model_path, num_shuffles = auxfun_models.Check4weights( net_type, Path(dlcparent_path), num_shuffles) if Shuffles == None: Shuffles = range(1, num_shuffles + 1, 1) else: Shuffles = [i for i in Shuffles if isinstance(i, int)] ( individuals, uniquebodyparts, multianimalbodyparts, ) = auxfun_multianimal.extractindividualsandbodyparts(cfg) TrainingFraction = cfg["TrainingFraction"] for shuffle in Shuffles: # Creating shuffles starting from 1 for trainFraction in TrainingFraction: train_inds_temp, test_inds_temp = trainingsetmanipulation.SplitTrials( range(len(img_names)), trainFraction) # Map back to the original indices. temp = [ name for i, name in enumerate(img_names) if i in test_inds_temp ] mask = Data.index.str.contains("|".join(temp)) testIndices = np.flatnonzero(mask) trainIndices = np.flatnonzero(~mask) #################################################### # Generating data structure with labeled information & frame metadata (for deep cut) #################################################### # Make training file! data = [] print("Creating training data for ", shuffle, trainFraction) print("This can take some time...") for jj in tqdm(trainIndices): jointsannotated = False H = {} # load image to get dimensions: filename = Data.index[jj] im = io.imread(os.path.join(cfg["project_path"], filename)) H["image"] = filename try: H["size"] = np.array( [np.shape(im)[2], np.shape(im)[0], np.shape(im)[1]]) except: # print "Grayscale!" H["size"] = np.array([1, np.shape(im)[0], np.shape(im)[1]]) Joints = {} for prfxindex, prefix in enumerate(individuals): joints = (np.zeros( (len(uniquebodyparts) + len(multianimalbodyparts), 3)) * np.nan) if prefix != "single": # first ones are multianimalparts! indexjoints = 0 for bpindex, bodypart in enumerate( multianimalbodyparts): socialbdpt = bodypart # prefix+bodypart #build names! # if socialbdpt in actualbpts: try: x, y = ( Data[prefix][socialbdpt]["x"][jj], Data[prefix][socialbdpt]["y"][jj], ) joints[indexjoints, 0] = int(bpindex) joints[indexjoints, 1] = round(x, numdigits) joints[indexjoints, 2] = round(y, numdigits) indexjoints += 1 except: pass else: indexjoints = len(multianimalbodyparts) for bpindex, bodypart in enumerate(uniquebodyparts): socialbdpt = bodypart # prefix+bodypart #build names! # if socialbdpt in actualbpts: try: x, y = ( Data[prefix][socialbdpt]["x"][jj], Data[prefix][socialbdpt]["y"][jj], ) joints[indexjoints, 0] = len( multianimalbodyparts) + int(bpindex) joints[indexjoints, 1] = round(x, 2) joints[indexjoints, 2] = round(y, 2) indexjoints += 1 except: pass # Drop missing body parts joints = joints[~np.isnan(joints).any(axis=1)] # Drop points lying outside the image inside = np.logical_and.reduce(( joints[:, 1] < im.shape[1], joints[:, 1] > 0, joints[:, 2] < im.shape[0], joints[:, 2] > 0, )) joints = joints[inside] if np.size(joints) > 0: # exclude images without labels jointsannotated = True Joints[prfxindex] = joints # np.array(joints, dtype=int) H["joints"] = Joints if jointsannotated: # exclude images without labels data.append(H) if len(trainIndices) > 0: ( datafilename, metadatafilename, ) = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) ################################################################################ # Saving metadata and data file (Pickle file) ################################################################################ auxiliaryfunctions.SaveMetadata( os.path.join(project_path, metadatafilename), data, trainIndices, testIndices, trainFraction, ) datafilename = datafilename.split(".mat")[0] + ".pickle" import pickle with open(os.path.join(project_path, datafilename), "wb") as f: # Pickle the 'labeled-data' dictionary using the highest protocol available. pickle.dump(data, f, pickle.HIGHEST_PROTOCOL) ################################################################################ # Creating file structure for training & # Test files as well as pose_yaml files (containing training and testing information) ################################################################################# modelfoldername = auxiliaryfunctions.GetModelFolder( trainFraction, shuffle, cfg) auxiliaryfunctions.attempttomakefolder( Path(config).parents[0] / modelfoldername, recursive=True) auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername) + "/" + "/train") auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername) + "/" + "/test") path_train_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "train", "pose_cfg.yaml", )) path_test_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "test", "pose_cfg.yaml", )) path_inference_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "test", "inference_cfg.yaml", )) jointnames = [str(bpt) for bpt in multianimalbodyparts] jointnames.extend([str(bpt) for bpt in uniquebodyparts]) items2change = { "dataset": datafilename, "metadataset": metadatafilename, "num_joints": len(multianimalbodyparts) + len(uniquebodyparts), # cfg["uniquebodyparts"]), "all_joints": [[i] for i in range( len(multianimalbodyparts) + len(uniquebodyparts)) ], # cfg["uniquebodyparts"]))], "all_joints_names": jointnames, "init_weights": model_path, "project_path": str(cfg["project_path"]), "net_type": net_type, "pairwise_loss_weight": 0.1, "pafwidth": 20, "partaffinityfield_graph": partaffinityfield_graph, "partaffinityfield_predict": partaffinityfield_predict, "weigh_only_present_joints": False, "num_limbs": len(partaffinityfield_graph), "dataset_type": dataset_type, "optimizer": "adam", "batch_size": 8, "multi_step": [[1e-4, 7500], [5 * 1e-5, 12000], [1e-5, 200000]], "save_iters": 10000, "display_iters": 500, } defaultconfigfile = os.path.join(dlcparent_path, "pose_cfg.yaml") trainingdata = trainingsetmanipulation.MakeTrain_pose_yaml( items2change, path_train_config, defaultconfigfile) keys2save = [ "dataset", "num_joints", "all_joints", "all_joints_names", "net_type", "init_weights", "global_scale", "location_refinement", "locref_stdev", "dataset_type", "partaffinityfield_predict", "pairwise_predict", "partaffinityfield_graph", "num_limbs", "dataset_type", ] trainingsetmanipulation.MakeTest_pose_yaml( trainingdata, keys2save, path_test_config, nmsradius=5.0, minconfidence=0.01, ) # setting important def. values for inference # Setting inference cfg file: defaultinference_configfile = os.path.join( dlcparent_path, "inference_cfg.yaml") items2change = { "minimalnumberofconnections": int(len(cfg["multianimalbodyparts"]) / 2), "topktoretain": len(cfg["individuals"]) + 1 * (len(cfg["uniquebodyparts"]) > 0), } # TODO: "distnormalization": could be calculated here based on data and set # >> now we calculate this during evaluation (which is a good spot...) trainingsetmanipulation.MakeInference_yaml( items2change, path_inference_config, defaultinference_configfile) print( "The training dataset is successfully created. Use the function 'train_network' to start training. Happy training!" ) else: pass
""" DeepLabCut2.2 Toolbox (deeplabcut.org) © A. & M. Mathis Labs https://github.com/DeepLabCut/DeepLabCut Please see AUTHORS for contributors. https://github.com/DeepLabCut/DeepLabCut/blob/master/AUTHORS Licensed under GNU Lesser General Public License v3.0 """ import os from deeplabcut.utils.auxiliaryfunctions import ( read_plainconfig, get_deeplabcut_path, ) dlcparent_path = get_deeplabcut_path() reid_config = os.path.join(dlcparent_path, "reid_cfg.yaml") cfg = read_plainconfig(reid_config)
def create_training_dataset( config, num_shuffles=1, Shuffles=None, windows2linux=False, userfeedback=False, trainIndices=None, testIndices=None, net_type=None, augmenter_type=None, posecfg_template=None, ): """Creates a training dataset. Labels from all the extracted frames are merged into a single .h5 file. Only the videos included in the config file are used to create this dataset. Parameters ---------- config : string Full path of the ``config.yaml`` file as a string. num_shuffles : int, optional, default=1 Number of shuffles of training dataset to create, i.e. ``[1,2,3]`` for ``num_shuffles=3``. Shuffles: list[int], optional Alternatively the user can also give a list of shuffles. userfeedback: bool, optional, default=False If ``False``, all requested train/test splits are created (no matter if they already exist). If you want to assure that previous splits etc. are not overwritten, set this to ``True`` and you will be asked for each split. trainIndices: list of lists, optional, default=None List of one or multiple lists containing train indexes. A list containing two lists of training indexes will produce two splits. testIndices: list of lists, optional, default=None List of one or multiple lists containing test indexes. net_type: list, optional, default=None Type of networks. Currently supported options are * ``resnet_50`` * ``resnet_101`` * ``resnet_152`` * ``mobilenet_v2_1.0`` * ``mobilenet_v2_0.75`` * ``mobilenet_v2_0.5`` * ``mobilenet_v2_0.35`` * ``efficientnet-b0`` * ``efficientnet-b1`` * ``efficientnet-b2`` * ``efficientnet-b3`` * ``efficientnet-b4`` * ``efficientnet-b5`` * ``efficientnet-b6`` augmenter_type: string, optional, default=None Type of augmenter. Currently supported augmenters are * ``default`` * ``scalecrop`` * ``imgaug`` * ``tensorpack`` * ``deterministic`` posecfg_template: string, optional, default=None Path to a ``pose_cfg.yaml`` file to use as a template for generating the new one for the current iteration. Useful if you would like to start with the same parameters a previous training iteration. None uses the default ``pose_cfg.yaml``. Returns ------- list(tuple) or None If training dataset was successfully created, a list of tuples is returned. The first two elements in each tuple represent the training fraction and the shuffle value. The last two elements in each tuple are arrays of integers representing the training and test indices. Returns None if training dataset could not be created. Notes ----- Use the function ``add_new_videos`` at any stage of the project to add more videos to the project. Examples -------- Linux/MacOS >>> deeplabcut.create_training_dataset( '/analysis/project/reaching-task/config.yaml', num_shuffles=1, ) Windows >>> deeplabcut.create_training_dataset( 'C:\\Users\\Ulf\\looming-task\\config.yaml', Shuffles=[3,17,5], ) """ import scipy.io as sio if windows2linux: # DeprecationWarnings are silenced since Python 3.2 unless triggered in __main__ warnings.warn( "`windows2linux` has no effect since 2.2.0.4 and will be removed in 2.2.1.", FutureWarning, ) # Loading metadata from config file: cfg = auxiliaryfunctions.read_config(config) if posecfg_template: if not posecfg_template.endswith("pose_cfg.yaml"): raise ValueError( "posecfg_template argument must contain path to a pose_cfg.yaml file" ) else: print("Reloading pose_cfg parameters from " + posecfg_template + '\n') from deeplabcut.utils.auxiliaryfunctions import read_plainconfig prior_cfg = read_plainconfig(posecfg_template) if cfg.get("multianimalproject", False): from deeplabcut.generate_training_dataset.multiple_individuals_trainingsetmanipulation import ( create_multianimaltraining_dataset, ) create_multianimaltraining_dataset(config, num_shuffles, Shuffles, net_type=net_type) else: scorer = cfg["scorer"] project_path = cfg["project_path"] # Create path for training sets & store data there trainingsetfolder = auxiliaryfunctions.GetTrainingSetFolder( cfg) # Path concatenation OS platform independent auxiliaryfunctions.attempttomakefolder(Path( os.path.join(project_path, str(trainingsetfolder))), recursive=True) Data = merge_annotateddatasets( cfg, Path(os.path.join(project_path, trainingsetfolder)), ) if Data is None: return Data = Data[scorer] # extract labeled data # loading & linking pretrained models if net_type is None: # loading & linking pretrained models net_type = cfg.get("default_net_type", "resnet_50") else: if ("resnet" in net_type or "mobilenet" in net_type or "efficientnet" in net_type): pass else: raise ValueError("Invalid network type:", net_type) if augmenter_type is None: augmenter_type = cfg.get("default_augmenter", "imgaug") if augmenter_type is None: # this could be in config.yaml for old projects! # updating variable if null/None! #backwardscompatability auxiliaryfunctions.edit_config(config, {"default_augmenter": "imgaug"}) augmenter_type = "imgaug" elif augmenter_type not in [ "default", "scalecrop", "imgaug", "tensorpack", "deterministic", ]: raise ValueError("Invalid augmenter type:", augmenter_type) if posecfg_template: if net_type != prior_cfg["net_type"]: print( "WARNING: Specified net_type does not match net_type from posecfg_template path entered. Proceed with caution." ) if augmenter_type != prior_cfg["dataset_type"]: print( "WARNING: Specified augmenter_type does not match dataset_type from posecfg_template path entered. Proceed with caution." ) # Loading the encoder (if necessary downloading from TF) dlcparent_path = auxiliaryfunctions.get_deeplabcut_path() if not posecfg_template: defaultconfigfile = os.path.join(dlcparent_path, "pose_cfg.yaml") elif posecfg_template: defaultconfigfile = posecfg_template model_path, num_shuffles = auxfun_models.check_for_weights( net_type, Path(dlcparent_path), num_shuffles) if Shuffles is None: Shuffles = range(1, num_shuffles + 1) else: Shuffles = [i for i in Shuffles if isinstance(i, int)] # print(trainIndices,testIndices, Shuffles, augmenter_type,net_type) if trainIndices is None and testIndices is None: splits = [( trainFraction, shuffle, SplitTrials(range(len(Data.index)), trainFraction), ) for trainFraction in cfg["TrainingFraction"] for shuffle in Shuffles] else: if len(trainIndices) != len(testIndices) != len(Shuffles): raise ValueError( "Number of Shuffles and train and test indexes should be equal." ) splits = [] for shuffle, (train_inds, test_inds) in enumerate( zip(trainIndices, testIndices)): trainFraction = round( len(train_inds) * 1.0 / (len(train_inds) + len(test_inds)), 2) print( f"You passed a split with the following fraction: {int(100 * trainFraction)}%" ) # Now that the training fraction is guaranteed to be correct, # the values added to pad the indices are removed. train_inds = np.asarray(train_inds) train_inds = train_inds[train_inds != -1] test_inds = np.asarray(test_inds) test_inds = test_inds[test_inds != -1] splits.append((trainFraction, Shuffles[shuffle], (train_inds, test_inds))) bodyparts = cfg["bodyparts"] nbodyparts = len(bodyparts) for trainFraction, shuffle, (trainIndices, testIndices) in splits: if len(trainIndices) > 0: if userfeedback: trainposeconfigfile, _, _ = training.return_train_network_path( config, shuffle=shuffle, trainingsetindex=cfg["TrainingFraction"].index( trainFraction), ) if trainposeconfigfile.is_file(): askuser = input( "The model folder is already present. If you continue, it will overwrite the existing model (split). Do you want to continue?(yes/no): " ) if (askuser == "no" or askuser == "No" or askuser == "N" or askuser == "No"): raise Exception( "Use the Shuffles argument as a list to specify a different shuffle index. Check out the help for more details." ) #################################################### # Generating data structure with labeled information & frame metadata (for deep cut) #################################################### # Make training file! ( datafilename, metadatafilename, ) = auxiliaryfunctions.GetDataandMetaDataFilenames( trainingsetfolder, trainFraction, shuffle, cfg) ################################################################################ # Saving data file (convert to training file for deeper cut (*.mat)) ################################################################################ data, MatlabData = format_training_data( Data, trainIndices, nbodyparts, project_path) sio.savemat(os.path.join(project_path, datafilename), {"dataset": MatlabData}) ################################################################################ # Saving metadata (Pickle file) ################################################################################ auxiliaryfunctions.SaveMetadata( os.path.join(project_path, metadatafilename), data, trainIndices, testIndices, trainFraction, ) ################################################################################ # Creating file structure for training & # Test files as well as pose_yaml files (containing training and testing information) ################################################################################# modelfoldername = auxiliaryfunctions.get_model_folder( trainFraction, shuffle, cfg) auxiliaryfunctions.attempttomakefolder( Path(config).parents[0] / modelfoldername, recursive=True) auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername) + "/train") auxiliaryfunctions.attempttomakefolder( str(Path(config).parents[0] / modelfoldername) + "/test") path_train_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "train", "pose_cfg.yaml", )) path_test_config = str( os.path.join( cfg["project_path"], Path(modelfoldername), "test", "pose_cfg.yaml", )) # str(cfg['proj_path']+'/'+Path(modelfoldername) / 'test' / 'pose_cfg.yaml') items2change = { "dataset": datafilename, "metadataset": metadatafilename, "num_joints": len(bodyparts), "all_joints": [[i] for i in range(len(bodyparts))], "all_joints_names": [str(bpt) for bpt in bodyparts], "init_weights": model_path, "project_path": str(cfg["project_path"]), "net_type": net_type, "dataset_type": augmenter_type, } items2drop = {} if augmenter_type == "scalecrop": # these values are dropped as scalecrop # doesn't have rotation implemented items2drop = {"rotation": 0, "rotratio": 0.0} # Also drop maDLC smart cropping augmentation parameters for key in [ "pre_resize", "crop_size", "max_shift", "crop_sampling" ]: items2drop[key] = None trainingdata = MakeTrain_pose_yaml(items2change, path_train_config, defaultconfigfile, items2drop) keys2save = [ "dataset", "num_joints", "all_joints", "all_joints_names", "net_type", "init_weights", "global_scale", "location_refinement", "locref_stdev", ] MakeTest_pose_yaml(trainingdata, keys2save, path_test_config) print( "The training dataset is successfully created. Use the function 'train_network' to start training. Happy training!" ) return splits
© A. & M. Mathis Labs https://github.com/AlexEMG/DeepLabCut Please see AUTHORS for contributors. https://github.com/AlexEMG/DeepLabCut/blob/master/AUTHORS Licensed under GNU Lesser General Public License v3.0 """ import os import wx from deeplabcut.utils import auxiliaryfunctions dlcparent_path = auxiliaryfunctions.get_deeplabcut_path() media_path = os.path.join(dlcparent_path, "gui", "media") logo = os.path.join(media_path, "logo.png") class Load_project(wx.Panel): """ """ def __init__(self, parent, gui_size, cfg): """Constructor""" wx.Panel.__init__(self, parent=parent) # variable initilization self.config = cfg # design the panel self.sizer = wx.GridBagSizer(10, 15)