示例#1
0
def _training(jdata):
    # training
    training = {}
    seed = None
    if j_have (jdata, 'seed') :
        seed = jdata['seed']
    training['systems'] = jdata['systems']
    training['set_prefix'] = jdata['set_prefix']
    training['stop_batch'] = jdata['stop_batch']
    training['batch_size'] = jdata['batch_size']
    if seed is not None:
        training['seed'] = seed
    training['disp_file'] = "lcurve.out"
    if j_have (jdata, "disp_file") : training['disp_file'] = jdata["disp_file"]
    training['disp_freq'] = j_must_have (jdata, 'disp_freq')
    training['numb_test'] = j_must_have (jdata, 'numb_test')
    training['save_freq'] = j_must_have (jdata, 'save_freq')
    training['save_ckpt'] = j_must_have (jdata, 'save_ckpt')
    training['disp_training'] = j_must_have (jdata, 'disp_training')
    training['time_training'] = j_must_have (jdata, 'time_training')
    if j_have (jdata, 'profiling') :
        training['profiling'] = jdata['profiling']
        if training['profiling'] :
            training['profiling_file'] = j_must_have (jdata, 'profiling_file')
    return training
示例#2
0
def _loss(jdata):
    # loss
    loss = {}
    loss['start_pref_e'] = j_must_have (jdata, 'start_pref_e')
    loss['limit_pref_e'] = j_must_have (jdata, 'limit_pref_e')
    loss['start_pref_f'] = j_must_have (jdata, 'start_pref_f')
    loss['limit_pref_f'] = j_must_have (jdata, 'limit_pref_f')
    loss['start_pref_v'] = j_must_have (jdata, 'start_pref_v')
    loss['limit_pref_v'] = j_must_have (jdata, 'limit_pref_v')
    if j_have(jdata, 'start_pref_ae') :
        loss['start_pref_ae'] = jdata['start_pref_ae']
    if j_have(jdata, 'limit_pref_ae') :
        loss['limit_pref_ae'] = jdata['limit_pref_ae']
    return loss
示例#3
0
def _fitting_net(jdata):
    fitting_net = {}
    seed = None
    if j_have (jdata, 'seed') :
        seed = jdata['seed']
    fitting_net['neuron']= j_must_have_d (jdata, 'fitting_neuron', ['n_neuron'])
    fitting_net['resnet_dt'] = True
    if j_have(jdata, 'resnet_dt') :
        fitting_net['resnet_dt'] = jdata['resnet_dt']
    if j_have(jdata, 'fitting_resnet_dt') :
        fitting_net['resnet_dt'] = jdata['fitting_resnet_dt']    
    if seed is not None:
        fitting_net['seed'] = seed
    return fitting_net
示例#4
0
def _smth_descriptor(jdata):
    descriptor = {}
    seed = None
    if j_have (jdata, 'seed') :
        seed = jdata['seed']
    descriptor['type'] = 'se_a'
    descriptor['sel'] = jdata['sel_a']
    if j_have(jdata, 'rcut_smth') :
        descriptor['rcut_smth'] = jdata['rcut_smth']
    else :
        descriptor['rcut_smth'] = descriptor['rcut']
    descriptor['rcut'] = jdata['rcut']
    descriptor['neuron'] = j_must_have (jdata, 'filter_neuron')
    descriptor['axis_neuron'] = j_must_have_d (jdata, 'axis_neuron', ['n_axis_neuron'])
    descriptor['resnet_dt'] = False
    if j_have(jdata, 'resnet_dt') :
        descriptor['resnet_dt'] = jdata['filter_resnet_dt']
    if seed is not None:
        descriptor['seed'] = seed
    return descriptor
示例#5
0
def _nonsmth_descriptor(jdata) :
    output = {}
    seed = None
    if j_have (jdata, 'seed') :
        seed = jdata['seed']
    # model
    descriptor = {}
    descriptor['type'] = 'loc_frame'
    descriptor['sel_a'] = jdata['sel_a']
    descriptor['sel_r'] = jdata['sel_r']
    descriptor['rcut'] = jdata['rcut']
    descriptor['axis_rule'] = jdata['axis_rule']
    return descriptor