def _smth_descriptor(jdata: Dict[str, Any]) -> Dict[str, Any]: """Convert data to v1 input for smooth descriptor. Parameters ---------- jdata : Dict[str, Any] parsed input json/yaml data Returns ------- Dict[str, Any] dict with descriptor parameters """ descriptor = {} seed = jdata.get("seed", None) if seed is not None: descriptor["seed"] = seed descriptor["type"] = "se_a" descriptor["sel"] = jdata["sel_a"] _jcopy(jdata, descriptor, ("rcut", )) descriptor["rcut_smth"] = jdata.get("rcut_smth", descriptor["rcut"]) descriptor["neuron"] = j_must_have(jdata, "filter_neuron") descriptor["axis_neuron"] = j_must_have(jdata, "axis_neuron", ["n_axis_neuron"]) descriptor["resnet_dt"] = False if "resnet_dt" in jdata: descriptor["resnet_dt"] = jdata["filter_resnet_dt"] return descriptor
def _learning_rate(jdata): # learning rate learning_rate = {} learning_rate['type'] = 'exp' learning_rate['decay_steps'] = j_must_have(jdata, 'decay_steps') learning_rate['decay_rate'] = j_must_have(jdata, 'decay_rate') learning_rate['start_lr'] = j_must_have(jdata, 'start_lr') return learning_rate
def compute_efv(jfile): fp = open(jfile, 'r') jdata = json.load(fp) run_opt = RunOptions(None) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 1 test_size = 1 rcut = j_must_have(jdata, 'rcut') data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt) tot_numb_batches = sum(data.get_nbatches()) lr = LearingRate(jdata, tot_numb_batches) model = NNPModel(jdata, run_opt=run_opt) model.build(data, lr) test_data = data.get_test() feed_dict_test = { model.t_prop_c: test_data["prop_c"], model.t_energy: test_data["energy"][:model.numb_test], model.t_force: np.reshape(test_data["force"][:model.numb_test, :], [-1]), model.t_virial: np.reshape(test_data["virial"][:model.numb_test, :], [-1]), model.t_atom_ener: np.reshape(test_data["atom_ener"][:model.numb_test, :], [-1]), model.t_atom_pref: np.reshape(test_data["atom_pref"][:model.numb_test, :], [-1]), model.t_coord: np.reshape(test_data["coord"][:model.numb_test, :], [-1]), model.t_box: test_data["box"][:model.numb_test, :], model.t_type: np.reshape(test_data["type"][:model.numb_test, :], [-1]), model.t_natoms: test_data["natoms_vec"], model.t_mesh: test_data["default_mesh"], model.t_fparam: np.reshape(test_data["fparam"][:model.numb_test, :], [-1]), model.is_training: False } sess = tf.Session() sess.run(tf.global_variables_initializer()) [e, f, v] = sess.run([model.energy, model.force, model.virial], feed_dict=feed_dict_test) return e, f, v
def _fitting_net(jdata: Dict[str, Any]) -> Dict[str, Any]: """Convert data to v1 input for fitting net. Parameters ---------- jdata : Dict[str, Any] parsed input json/yaml data Returns ------- Dict[str, Any] dict with fitting net parameters """ fitting_net = {} seed = jdata.get("seed", None) if seed is not None: fitting_net["seed"] = seed fitting_net["neuron"] = j_must_have(jdata, "fitting_neuron", ["n_neuron"]) fitting_net["resnet_dt"] = True if "resnet_dt" in jdata: fitting_net["resnet_dt"] = jdata["resnet_dt"] if "fitting_resnet_dt" in jdata: fitting_net["resnet_dt"] = jdata["fitting_resnet_dt"] return fitting_net
def _training(jdata): # training training = {} seed = None if j_have (jdata, 'seed') : seed = jdata['seed'] training['systems'] = jdata['systems'] training['set_prefix'] = jdata['set_prefix'] training['stop_batch'] = jdata['stop_batch'] training['batch_size'] = jdata['batch_size'] if seed is not None: training['seed'] = seed training['disp_file'] = "lcurve.out" if j_have (jdata, "disp_file") : training['disp_file'] = jdata["disp_file"] training['disp_freq'] = j_must_have (jdata, 'disp_freq') training['numb_test'] = j_must_have (jdata, 'numb_test') training['save_freq'] = j_must_have (jdata, 'save_freq') training['save_ckpt'] = j_must_have (jdata, 'save_ckpt') training['disp_training'] = j_must_have (jdata, 'disp_training') training['time_training'] = j_must_have (jdata, 'time_training') if j_have (jdata, 'profiling') : training['profiling'] = jdata['profiling'] if training['profiling'] : training['profiling_file'] = j_must_have (jdata, 'profiling_file') return training
def _setUp(self): run_opt = RunOptions(restart=None, init_model=None, log_path=None, log_level=30, mpi_log="master") jdata = j_loader(INPUT) # init model model = DPTrainer(jdata, run_opt=run_opt) rcut = model.model.get_rcut() # init data system systems = j_must_have(jdata['training'], 'systems') #systems[0] = tests_path / systems[0] systems = [tests_path / ii for ii in systems] set_pfx = j_must_have(jdata['training'], 'set_prefix') batch_size = j_must_have(jdata['training'], 'batch_size') test_size = j_must_have(jdata['training'], 'numb_test') data = DeepmdDataSystem(systems, batch_size, test_size, rcut, set_prefix=set_pfx) data.add_dict(data_requirement) # clear the default graph tf.reset_default_graph() # build the model with stats from the first system model.build(data) # freeze the graph with self.test_session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) graph = tf.get_default_graph() input_graph_def = graph.as_graph_def() nodes = "o_dipole,o_rmat,o_rmat_deriv,o_nlist,o_rij,descrpt_attr/rcut,descrpt_attr/ntypes,descrpt_attr/sel,descrpt_attr/ndescrpt,model_attr/tmap,model_attr/sel_type,model_attr/model_type,model_attr/output_dim,model_attr/model_version" output_graph_def = tf.graph_util.convert_variables_to_constants( sess, input_graph_def, nodes.split(",")) output_graph = str(tests_path / os.path.join(modifier_datapath, 'dipole.pb')) with tf.gfile.GFile(output_graph, "wb") as f: f.write(output_graph_def.SerializeToString())
def _training(jdata: Dict[str, Any]) -> Dict[str, Any]: """Convert data to v1 input for training. Parameters ---------- jdata : Dict[str, Any] parsed input json/yaml data Returns ------- Dict[str, Any] dict with training parameters """ training = {} seed = jdata.get("seed", None) if seed is not None: training["seed"] = seed _jcopy(jdata, training, ("systems", "set_prefix", "stop_batch", "batch_size")) training["disp_file"] = "lcurve.out" if "disp_file" in jdata: training["disp_file"] = jdata["disp_file"] training["disp_freq"] = j_must_have(jdata, "disp_freq") training["numb_test"] = j_must_have(jdata, "numb_test") training["save_freq"] = j_must_have(jdata, "save_freq") training["save_ckpt"] = j_must_have(jdata, "save_ckpt") training["disp_training"] = j_must_have(jdata, "disp_training") training["time_training"] = j_must_have(jdata, "time_training") if "profiling" in jdata: training["profiling"] = jdata["profiling"] if training["profiling"]: training["profiling_file"] = j_must_have(jdata, "profiling_file") return training
def _setUp(self): args = Args() run_opt = RunOptions(args, False) with open (args.INPUT, 'r') as fp: jdata = json.load (fp) # init model model = NNPTrainer (jdata, run_opt = run_opt) rcut = model.model.get_rcut() # init data system systems = j_must_have(jdata['training'], 'systems') set_pfx = j_must_have(jdata['training'], 'set_prefix') batch_size = j_must_have(jdata['training'], 'batch_size') test_size = j_must_have(jdata['training'], 'numb_test') data = DeepmdDataSystem(systems, batch_size, test_size, rcut, set_prefix=set_pfx) data.add_dict(data_requirement) # clear the default graph tf.reset_default_graph() # build the model with stats from the first system model.build (data) # freeze the graph with tf.Session() as sess: init_op = tf.global_variables_initializer() sess.run(init_op) graph = tf.get_default_graph() input_graph_def = graph.as_graph_def() nodes = "o_dipole,o_rmat,o_rmat_deriv,o_nlist,o_rij,descrpt_attr/rcut,descrpt_attr/ntypes,descrpt_attr/sel,descrpt_attr/ndescrpt,model_attr/tmap,model_attr/sel_type,model_attr/model_type" output_graph_def = tf.graph_util.convert_variables_to_constants( sess, input_graph_def, nodes.split(",") ) output_graph = os.path.join(modifier_datapath, 'dipole.pb') with tf.gfile.GFile(output_graph, "wb") as f: f.write(output_graph_def.SerializeToString())
def get_data(jdata: Dict[str, Any], rcut, type_map, modifier): systems = j_must_have(jdata, "systems") if isinstance(systems, str): systems = expand_sys_str(systems) help_msg = 'Please check your setting for data systems' # check length of systems if len(systems) == 0: msg = 'cannot find valid a data system' log.fatal(msg) raise IOError(msg, help_msg) # rougly check all items in systems are valid for ii in systems: ii = DPPath(ii) if (not ii.is_dir()): msg = f'dir {ii} is not a valid dir' log.fatal(msg) raise IOError(msg, help_msg) if (not (ii / 'type.raw').is_file()): msg = f'dir {ii} is not a valid data system dir' log.fatal(msg) raise IOError(msg, help_msg) batch_size = j_must_have(jdata, "batch_size") sys_probs = jdata.get("sys_probs", None) auto_prob = jdata.get("auto_prob", "prob_sys_size") data = DeepmdDataSystem( systems=systems, batch_size=batch_size, test_size=1, # to satisfy the old api shuffle_test=True, # to satisfy the old api rcut=rcut, type_map=type_map, modifier=modifier, trn_all_set=True, # sample from all sets sys_probs=sys_probs, auto_prob_style=auto_prob ) data.add_dict(data_requirement) return data
def _loss(jdata): # loss loss = {} loss['start_pref_e'] = j_must_have (jdata, 'start_pref_e') loss['limit_pref_e'] = j_must_have (jdata, 'limit_pref_e') loss['start_pref_f'] = j_must_have (jdata, 'start_pref_f') loss['limit_pref_f'] = j_must_have (jdata, 'limit_pref_f') loss['start_pref_v'] = j_must_have (jdata, 'start_pref_v') loss['limit_pref_v'] = j_must_have (jdata, 'limit_pref_v') if j_have(jdata, 'start_pref_ae') : loss['start_pref_ae'] = jdata['start_pref_ae'] if j_have(jdata, 'limit_pref_ae') : loss['limit_pref_ae'] = jdata['limit_pref_ae'] return loss
def _smth_descriptor(jdata): descriptor = {} seed = None if j_have (jdata, 'seed') : seed = jdata['seed'] descriptor['type'] = 'se_a' descriptor['sel'] = jdata['sel_a'] if j_have(jdata, 'rcut_smth') : descriptor['rcut_smth'] = jdata['rcut_smth'] else : descriptor['rcut_smth'] = descriptor['rcut'] descriptor['rcut'] = jdata['rcut'] descriptor['neuron'] = j_must_have (jdata, 'filter_neuron') descriptor['axis_neuron'] = j_must_have_d (jdata, 'axis_neuron', ['n_axis_neuron']) descriptor['resnet_dt'] = False if j_have(jdata, 'resnet_dt') : descriptor['resnet_dt'] = jdata['filter_resnet_dt'] if seed is not None: descriptor['seed'] = seed return descriptor
def test_model(self): jfile = 'water_se_a_aparam.json' with open(jfile) as fp: jdata = json.load(fp) run_opt = RunOptions(None) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 1 test_size = 1 stop_batch = j_must_have(jdata, 'stop_batch') rcut = j_must_have(jdata['model']['descriptor'], 'rcut') data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt=None) test_data = data.get_test() # manually set aparam test_data['aparam'] = np.load('system/set.000/aparam.npy') numb_test = 1 descrpt = DescrptSeA(jdata['model']['descriptor']) fitting = EnerFitting(jdata['model']['fitting_net'], descrpt) model = Model(jdata['model'], descrpt, fitting) # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']]) input_data = { 'coord': [test_data['coord']], 'box': [test_data['box']], 'type': [test_data['type']], 'natoms_vec': [test_data['natoms_vec']], 'default_mesh': [test_data['default_mesh']], 'aparam': [test_data['aparam']], } model._compute_dstats(input_data) model.bias_atom_e = data.compute_energy_shift() t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') t_energy = tf.placeholder(global_ener_float_precision, [None], name='t_energy') t_force = tf.placeholder(global_tf_float_precision, [None], name='t_force') t_virial = tf.placeholder(global_tf_float_precision, [None], name='t_virial') t_atom_ener = tf.placeholder(global_tf_float_precision, [None], name='t_atom_ener') t_coord = tf.placeholder(global_tf_float_precision, [None], name='i_coord') t_type = tf.placeholder(tf.int32, [None], name='i_type') t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2], name='i_natoms') t_box = tf.placeholder(global_tf_float_precision, [None, 9], name='i_box') t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') t_aparam = tf.placeholder(global_tf_float_precision, [None], name='i_aparam') is_training = tf.placeholder(tf.bool) input_dict = {} input_dict['aparam'] = t_aparam model_pred\ = model.build (t_coord, t_type, t_natoms, t_box, t_mesh, input_dict, suffix = "se_a_aparam", reuse = False) energy = model_pred['energy'] force = model_pred['force'] virial = model_pred['virial'] atom_ener = model_pred['atom_ener'] feed_dict_test = { t_prop_c: test_data['prop_c'], t_energy: test_data['energy'][:numb_test], t_force: np.reshape(test_data['force'][:numb_test, :], [-1]), t_virial: np.reshape(test_data['virial'][:numb_test, :], [-1]), t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :], [-1]), t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]), t_box: test_data['box'][:numb_test, :], t_type: np.reshape(test_data['type'][:numb_test, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], t_aparam: np.reshape(test_data['aparam'][:numb_test, :], [-1]), is_training: False } sess = tf.Session() sess.run(tf.global_variables_initializer()) [e, f, v] = sess.run([energy, force, virial], feed_dict=feed_dict_test) e = e.reshape([-1]) f = f.reshape([-1]) v = v.reshape([-1]) refe = [61.35473702079649] reff = [ 7.789591210641927388e-02, 9.411176646369459609e-02, 3.785806413688173194e-03, 1.430830954178063386e-01, 1.146964190520970150e-01, -1.320340288927138173e-02, -7.308720494747594776e-02, 6.508269338140809657e-02, 5.398739145542804643e-04, 5.863268336973800898e-02, -1.603409523950408699e-01, -5.083084610994957619e-03, -2.551569799443983988e-01, 3.087934885732580501e-02, 1.508590526622844222e-02, 4.863249399791078065e-02, -1.444292753594846324e-01, -1.125098094204559241e-03 ] refv = [ -6.069498397488943819e-01, 1.101778888191114192e-01, 1.981907430646132409e-02, 1.101778888191114608e-01, -3.315612988100872793e-01, -5.999739184898976799e-03, 1.981907430646132756e-02, -5.999739184898974197e-03, -1.198656608172396325e-03 ] refe = np.reshape(refe, [-1]) reff = np.reshape(reff, [-1]) refv = np.reshape(refv, [-1]) places = 10 for ii in range(e.size): self.assertAlmostEqual(e[ii], refe[ii], places=places) for ii in range(f.size): self.assertAlmostEqual(f[ii], reff[ii], places=places) for ii in range(v.size): self.assertAlmostEqual(v[ii], refv[ii], places=places)
def is_deepmd_v1_input(jdata): return "systems" in j_must_have(jdata, "training").keys()
def test_descriptor_one_side_exclude_types(self): """When we enable type_one_side, the descriptor should be the same for different types, when its environments are the same. Here we generates two data. The only difference is the type: (1) 0 1 1 1 1 1 (2) 1 1 1 1 1 1 When type_one_side is true, the first atom should have the same descriptor. Otherwise, it should be different (with random initial variables). We test both situation. """ jfile = 'water_se_a.json' jdata = j_loader(jfile) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 1 test_size = 1 rcut = j_must_have(jdata['model']['descriptor'], 'rcut') sel = j_must_have(jdata['model']['descriptor'], 'sel') ntypes = len(sel) data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt=None) test_data = data.get_test() numb_test = 1 # set parameters jdata['model']['descriptor']['neuron'] = [5, 5, 5] jdata['model']['descriptor']['axis_neuron'] = 2 jdata['model']['descriptor']['type_one_side'] = True jdata['model']['descriptor']['exclude_types'] = [[0, 0]] t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') t_coord = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='i_coord') t_type = tf.placeholder(tf.int32, [None], name='i_type') t_natoms = tf.placeholder(tf.int32, [ntypes + 2], name='i_natoms') t_box = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None, 9], name='i_box') t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') is_training = tf.placeholder(tf.bool) # successful descrpt = Descriptor(**jdata['model']['descriptor']) dout \ = descrpt.build( t_coord, t_type, t_natoms, t_box, t_mesh, {}, reuse = False, suffix = "_se_a_1side_exclude_types" ) # failed descrpt_failed = Descriptor( **{ **jdata['model']['descriptor'], "type_one_side": False }) dout_failed \ = descrpt_failed.build( t_coord, t_type, t_natoms, t_box, t_mesh, {}, reuse = False, suffix = "_se_a_1side_exclude_types_failed" ) feed_dict_test1 = { t_prop_c: test_data['prop_c'], t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]), t_box: test_data['box'][:numb_test, :], t_type: np.reshape(test_data['type'][:numb_test, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], is_training: False } feed_dict_test2 = feed_dict_test1.copy() # original type: 0 0 1 1 1 1 # current: 0 1 1 1 1 1 # current: 1 1 1 1 1 1 new_natoms1 = test_data['natoms_vec'].copy() new_natoms1[2] = 1 new_natoms1[3] = 5 new_type1 = test_data['type'].copy() new_type1[:numb_test, 0] = 0 new_type1[:numb_test, 1:6] = 1 new_natoms2 = test_data['natoms_vec'].copy() new_natoms2[2] = 0 new_natoms2[3] = 6 new_type2 = test_data['type'].copy() new_type2[:numb_test] = 1 feed_dict_test1[t_type] = np.reshape(new_type1[:numb_test, :], [-1]) feed_dict_test1[t_natoms] = new_natoms1 feed_dict_test2[t_type] = np.reshape(new_type2[:numb_test, :], [-1]) feed_dict_test2[t_natoms] = new_natoms2 print(feed_dict_test1, feed_dict_test2) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) [model_dout1] = sess.run([dout], feed_dict=feed_dict_test1) [model_dout2] = sess.run([dout], feed_dict=feed_dict_test2) [model_dout1_failed] = sess.run([dout_failed], feed_dict=feed_dict_test1) [model_dout2_failed] = sess.run([dout_failed], feed_dict=feed_dict_test2) model_dout1 = model_dout1.reshape([6, -1]) model_dout2 = model_dout2.reshape([6, -1]) model_dout1_failed = model_dout1_failed.reshape([6, -1]) model_dout2_failed = model_dout2_failed.reshape([6, -1]) np.testing.assert_almost_equal(model_dout1[0], model_dout2[0], 10) with self.assertRaises(AssertionError): np.testing.assert_almost_equal(model_dout1_failed[0], model_dout2_failed[0], 10)
def test_model(self): jfile = 'water_se_a_type.json' jdata = j_loader(jfile) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 1 test_size = 1 stop_batch = j_must_have(jdata, 'stop_batch') rcut = j_must_have (jdata['model']['descriptor'], 'rcut') data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt = None) test_data = data.get_test () numb_test = 1 jdata['model']['descriptor'].pop('type', None) descrpt = DescrptSeA(**jdata['model']['descriptor'], uniform_seed = True) jdata['model']['fitting_net']['descrpt'] = descrpt fitting = EnerFitting(**jdata['model']['fitting_net'], uniform_seed = True) typeebd_param = jdata['model']['type_embedding'] typeebd = TypeEmbedNet( neuron = typeebd_param['neuron'], resnet_dt = typeebd_param['resnet_dt'], seed = typeebd_param['seed'], uniform_seed = True) model = EnerModel(descrpt, fitting, typeebd) # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']]) input_data = {'coord' : [test_data['coord']], 'box': [test_data['box']], 'type': [test_data['type']], 'natoms_vec' : [test_data['natoms_vec']], 'default_mesh' : [test_data['default_mesh']] } model._compute_input_stat(input_data) model.descrpt.bias_atom_e = data.compute_energy_shift() t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') t_energy = tf.placeholder(GLOBAL_ENER_FLOAT_PRECISION, [None], name='t_energy') t_force = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_force') t_virial = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_virial') t_atom_ener = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_atom_ener') t_coord = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='i_coord') t_type = tf.placeholder(tf.int32, [None], name='i_type') t_natoms = tf.placeholder(tf.int32, [model.ntypes+2], name='i_natoms') t_box = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None, 9], name='i_box') t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') is_training = tf.placeholder(tf.bool) t_fparam = None inputs_dict = {} model_pred \ = model.build (t_coord, t_type, t_natoms, t_box, t_mesh, inputs_dict, suffix = "se_a_type", reuse = False) energy = model_pred['energy'] force = model_pred['force'] virial = model_pred['virial'] atom_ener = model_pred['atom_ener'] feed_dict_test = {t_prop_c: test_data['prop_c'], t_energy: test_data['energy'] [:numb_test], t_force: np.reshape(test_data['force'] [:numb_test, :], [-1]), t_virial: np.reshape(test_data['virial'] [:numb_test, :], [-1]), t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :], [-1]), t_coord: np.reshape(test_data['coord'] [:numb_test, :], [-1]), t_box: test_data['box'] [:numb_test, :], t_type: np.reshape(test_data['type'] [:numb_test, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], is_training: False} sess = self.test_session().__enter__() sess.run(tf.global_variables_initializer()) [e, f, v] = sess.run([energy, force, virial], feed_dict = feed_dict_test) # print(sess.run(model.type_embedding)) # np.savetxt('tmp.out', sess.run(descrpt.dout, feed_dict = feed_dict_test), fmt='%.10e') # # print(sess.run(model.atype_embed, feed_dict = feed_dict_test)) # print(sess.run(fitting.inputs, feed_dict = feed_dict_test)) # print(sess.run(fitting.outs, feed_dict = feed_dict_test)) # print(sess.run(fitting.atype_embed, feed_dict = feed_dict_test)) e = e.reshape([-1]) f = f.reshape([-1]) v = v.reshape([-1]) np.savetxt('e.out', e.reshape([1, -1]), delimiter=',') np.savetxt('f.out', f.reshape([1, -1]), delimiter=',') np.savetxt('v.out', v.reshape([1, -1]), delimiter=',') refe = [6.049065170680415804e+01] reff = [1.021832439441947293e-01,1.122650466359011306e-01,3.927874278714531091e-03,1.407089812207832635e-01,1.312473824343091400e-01,-1.228371057389851181e-02,-1.109672154547165501e-01,6.582735820731049070e-02,1.251568633647655391e-03,7.933758749748777428e-02,-1.831777072317984367e-01,-6.173090134630876760e-03,-2.703597126460742794e-01,4.817856571062521104e-02,1.491963457594796399e-02,5.909711543832503466e-02,-1.743406457563475287e-01,-1.642276779780762769e-03] refv = [-6.932736357193732823e-01,1.453756052949563837e-01,2.138263139115256783e-02,1.453756052949564392e-01,-3.880901656480436612e-01,-7.782259726407755700e-03,2.138263139115256437e-02,-7.782259726407749628e-03,-1.225285973678705374e-03] refe = np.reshape(refe, [-1]) reff = np.reshape(reff, [-1]) refv = np.reshape(refv, [-1]) places = 10 np.testing.assert_almost_equal(e, refe, places) np.testing.assert_almost_equal(f, reff, places) np.testing.assert_almost_equal(v, refv, places)
def test_model(self): jfile = 'polar_se_a.json' jdata = j_loader(jfile) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 1 test_size = 1 stop_batch = j_must_have(jdata, 'stop_batch') rcut = j_must_have(jdata['model']['descriptor'], 'rcut') data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt=None) test_data = data.get_test() numb_test = 1 jdata['model']['descriptor'].pop('type', None) jdata['model']['fitting_net'].pop('type', None) descrpt = DescrptSeA(**jdata['model']['descriptor'], uniform_seed=True) jdata['model']['fitting_net']['descrpt'] = descrpt fitting = PolarFittingSeA(**jdata['model']['fitting_net'], uniform_seed=True) model = PolarModel(descrpt, fitting) # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']]) input_data = { 'coord': [test_data['coord']], 'box': [test_data['box']], 'type': [test_data['type']], 'natoms_vec': [test_data['natoms_vec']], 'default_mesh': [test_data['default_mesh']], 'fparam': [test_data['fparam']], } model._compute_input_stat(input_data) t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') t_energy = tf.placeholder(GLOBAL_ENER_FLOAT_PRECISION, [None], name='t_energy') t_force = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_force') t_virial = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_virial') t_atom_ener = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_atom_ener') t_coord = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='i_coord') t_type = tf.placeholder(tf.int32, [None], name='i_type') t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2], name='i_natoms') t_box = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None, 9], name='i_box') t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') is_training = tf.placeholder(tf.bool) t_fparam = None model_pred \ = model.build (t_coord, t_type, t_natoms, t_box, t_mesh, t_fparam, suffix = "polar_se_a", reuse = False) polar = model_pred['polar'] gpolar = model_pred['global_polar'] force = model_pred['force'] virial = model_pred['virial'] atom_virial = model_pred['atom_virial'] feed_dict_test = { t_prop_c: test_data['prop_c'], t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]), t_box: test_data['box'][:numb_test, :], t_type: np.reshape(test_data['type'][:numb_test, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], is_training: False } sess = self.test_session().__enter__() sess.run(tf.global_variables_initializer()) [p, gp] = sess.run([polar, gpolar], feed_dict=feed_dict_test) p = p.reshape([-1]) refp = [ 3.39695248e+01, 2.16564043e+01, 8.18501479e-01, 2.16564043e+01, 1.38211789e+01, 5.22775159e-01, 8.18501479e-01, 5.22775159e-01, 1.97847218e-02, 8.08467431e-01, 3.42081126e+00, -2.01072261e-01, 3.42081126e+00, 1.54924596e+01, -9.06153697e-01, -2.01072261e-01, -9.06153697e-01, 5.30193262e-02 ] places = 6 np.testing.assert_almost_equal(p, refp, places) gp = gp.reshape([-1]) refgp = np.array(refp).reshape(-1, 9).sum(0) places = 5 np.testing.assert_almost_equal(gp, refgp, places) # make sure only one frame is used feed_dict_single = { t_prop_c: test_data['prop_c'], t_coord: np.reshape(test_data['coord'][:1, :], [-1]), t_box: test_data['box'][:1, :], t_type: np.reshape(test_data['type'][:1, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], is_training: False } [pf, pv, pav] = sess.run([force, virial, atom_virial], feed_dict=feed_dict_single) pf, pv = pf.reshape(-1), pv.reshape(-1) spv = pav.reshape(1, 9, -1, 9).sum(2).reshape(-1) base_dict = feed_dict_single.copy() coord0 = base_dict.pop(t_coord) box0 = base_dict.pop(t_box) fdf = -finite_difference( lambda coord: sess.run(gpolar, feed_dict={ **base_dict, t_coord: coord, t_box: box0 }).reshape(-1), test_data['coord'][:numb_test, :].reshape([-1])).reshape(-1) fdv = -(finite_difference( lambda box: sess.run( gpolar, feed_dict={ **base_dict, t_coord: strerch_box(coord0, box0, box), t_box: box }).reshape(-1), test_data['box'][:numb_test, :]).reshape([ -1, 3, 3 ]).transpose(0, 2, 1) @ box0.reshape(3, 3)).reshape(-1) delta = 1e-4 np.testing.assert_allclose(pf, fdf, delta) np.testing.assert_allclose(pv, fdv, delta) # make sure atomic virial sum to virial places = 10 np.testing.assert_almost_equal(pv, spv, places)
def _init_param(self, jdata): # model config model_param = j_must_have(jdata, 'model') descrpt_param = j_must_have(model_param, 'descriptor') fitting_param = j_must_have(model_param, 'fitting_net') typeebd_param = model_param.get('type_embedding', None) self.model_param = model_param self.descrpt_param = descrpt_param # descriptor try: descrpt_type = descrpt_param['type'] except KeyError: raise KeyError('the type of descriptor should be set by `type`') self.descrpt = Descriptor(**descrpt_param) # fitting net fitting_type = fitting_param.get('type', 'ener') self.fitting_type = fitting_type fitting_param.pop('type', None) fitting_param['descrpt'] = self.descrpt if fitting_type == 'ener': self.fitting = EnerFitting(**fitting_param) # elif fitting_type == 'wfc': # self.fitting = WFCFitting(fitting_param, self.descrpt) elif fitting_type == 'dipole': if descrpt_type == 'se_e2_a': self.fitting = DipoleFittingSeA(**fitting_param) else : raise RuntimeError('fitting dipole only supports descrptors: se_e2_a') elif fitting_type == 'polar': # if descrpt_type == 'loc_frame': # self.fitting = PolarFittingLocFrame(fitting_param, self.descrpt) if descrpt_type == 'se_e2_a': self.fitting = PolarFittingSeA(**fitting_param) else : raise RuntimeError('fitting polar only supports descrptors: loc_frame and se_e2_a') elif fitting_type == 'global_polar': if descrpt_type == 'se_e2_a': self.fitting = GlobalPolarFittingSeA(**fitting_param) else : raise RuntimeError('fitting global_polar only supports descrptors: loc_frame and se_e2_a') else : raise RuntimeError('unknow fitting type ' + fitting_type) # type embedding if typeebd_param is not None: self.typeebd = TypeEmbedNet( neuron=typeebd_param['neuron'], resnet_dt=typeebd_param['resnet_dt'], activation_function=typeebd_param['activation_function'], precision=typeebd_param['precision'], trainable=typeebd_param['trainable'], seed=typeebd_param['seed'] ) else: self.typeebd = None # init model # infer model type by fitting_type if fitting_type == 'ener': self.model = EnerModel( self.descrpt, self.fitting, self.typeebd, model_param.get('type_map'), model_param.get('data_stat_nbatch', 10), model_param.get('data_stat_protect', 1e-2), model_param.get('use_srtab'), model_param.get('smin_alpha'), model_param.get('sw_rmin'), model_param.get('sw_rmax') ) # elif fitting_type == 'wfc': # self.model = WFCModel(model_param, self.descrpt, self.fitting) elif fitting_type == 'dipole': self.model = DipoleModel( self.descrpt, self.fitting, model_param.get('type_map'), model_param.get('data_stat_nbatch', 10), model_param.get('data_stat_protect', 1e-2) ) elif fitting_type == 'polar': self.model = PolarModel( self.descrpt, self.fitting, model_param.get('type_map'), model_param.get('data_stat_nbatch', 10), model_param.get('data_stat_protect', 1e-2) ) elif fitting_type == 'global_polar': self.model = GlobalPolarModel( self.descrpt, self.fitting, model_param.get('type_map'), model_param.get('data_stat_nbatch', 10), model_param.get('data_stat_protect', 1e-2) ) else : raise RuntimeError('get unknown fitting type when building model') # learning rate lr_param = j_must_have(jdata, 'learning_rate') scale_by_worker = lr_param.get('scale_by_worker', 'linear') if scale_by_worker == 'linear': self.scale_lr_coef = float(self.run_opt.world_size) elif scale_by_worker == 'sqrt': self.scale_lr_coef = np.sqrt(self.run_opt.world_size).real else: self.scale_lr_coef = 1. lr_type = lr_param.get('type', 'exp') if lr_type == 'exp': self.lr = LearningRateExp(lr_param['start_lr'], lr_param['stop_lr'], lr_param['decay_steps']) else : raise RuntimeError('unknown learning_rate type ' + lr_type) # loss # infer loss type by fitting_type loss_param = jdata.get('loss', None) loss_type = loss_param.get('type', 'ener') if fitting_type == 'ener': loss_param.pop('type', None) loss_param['starter_learning_rate'] = self.lr.start_lr() if loss_type == 'ener': self.loss = EnerStdLoss(**loss_param) elif loss_type == 'ener_dipole': self.loss = EnerDipoleLoss(**loss_param) else: raise RuntimeError('unknow loss type') elif fitting_type == 'wfc': self.loss = TensorLoss(loss_param, model = self.model, tensor_name = 'wfc', tensor_size = self.model.get_out_size(), label_name = 'wfc') elif fitting_type == 'dipole': self.loss = TensorLoss(loss_param, model = self.model, tensor_name = 'dipole', tensor_size = 3, label_name = 'dipole') elif fitting_type == 'polar': self.loss = TensorLoss(loss_param, model = self.model, tensor_name = 'polar', tensor_size = 9, label_name = 'polarizability') elif fitting_type == 'global_polar': self.loss = TensorLoss(loss_param, model = self.model, tensor_name = 'global_polar', tensor_size = 9, atomic = False, label_name = 'polarizability') else : raise RuntimeError('get unknown fitting type when building loss function') # training tr_data = jdata['training'] self.disp_file = tr_data.get('disp_file', 'lcurve.out') self.disp_freq = tr_data.get('disp_freq', 1000) self.save_freq = tr_data.get('save_freq', 1000) self.save_ckpt = tr_data.get('save_ckpt', 'model.ckpt') self.display_in_training = tr_data.get('disp_training', True) self.timing_in_training = tr_data.get('time_training', True) self.profiling = self.run_opt.is_chief and tr_data.get('profiling', False) self.profiling_file = tr_data.get('profiling_file', 'timeline.json') self.tensorboard = self.run_opt.is_chief and tr_data.get('tensorboard', False) self.tensorboard_log_dir = tr_data.get('tensorboard_log_dir', 'log') self.tensorboard_freq = tr_data.get('tensorboard_freq', 1) # self.sys_probs = tr_data['sys_probs'] # self.auto_prob_style = tr_data['auto_prob'] self.useBN = False if fitting_type == 'ener' and self.fitting.get_numb_fparam() > 0 : self.numb_fparam = self.fitting.get_numb_fparam() else : self.numb_fparam = 0 if tr_data.get("validation_data", None) is not None: self.valid_numb_batch = tr_data["validation_data"].get("numb_btch", 1) else: self.valid_numb_batch = 1 # if init the graph with the frozen model self.frz_model = None self.model_type = None
def test_model(self): jfile = 'polar_se_a.json' with open(jfile) as fp: jdata = json.load(fp) run_opt = RunOptions(None) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 1 test_size = 1 stop_batch = j_must_have(jdata, 'stop_batch') rcut = j_must_have(jdata['model']['descriptor'], 'rcut') data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt=None) test_data = data.get_test() numb_test = 1 descrpt = DescrptSeA(jdata['model']['descriptor']) fitting = PolarFittingSeA(jdata['model']['fitting_net'], descrpt) model = PolarModel(jdata['model'], descrpt, fitting) model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']]) t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') t_energy = tf.placeholder(global_ener_float_precision, [None], name='t_energy') t_force = tf.placeholder(global_tf_float_precision, [None], name='t_force') t_virial = tf.placeholder(global_tf_float_precision, [None], name='t_virial') t_atom_ener = tf.placeholder(global_tf_float_precision, [None], name='t_atom_ener') t_coord = tf.placeholder(global_tf_float_precision, [None], name='i_coord') t_type = tf.placeholder(tf.int32, [None], name='i_type') t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2], name='i_natoms') t_box = tf.placeholder(global_tf_float_precision, [None, 9], name='i_box') t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') is_training = tf.placeholder(tf.bool) t_fparam = None model_pred \ = model.build (t_coord, t_type, t_natoms, t_box, t_mesh, t_fparam, suffix = "polar_se_a", reuse = False) polar = model_pred['polar'] feed_dict_test = { t_prop_c: test_data['prop_c'], t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]), t_box: test_data['box'][:numb_test, :], t_type: np.reshape(test_data['type'][:numb_test, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], is_training: False } sess = tf.Session() sess.run(tf.global_variables_initializer()) [p] = sess.run([polar], feed_dict=feed_dict_test) p = p.reshape([-1]) refp = [ 3.39695248e+01, 2.16564043e+01, 8.18501479e-01, 2.16564043e+01, 1.38211789e+01, 5.22775159e-01, 8.18501479e-01, 5.22775159e-01, 1.97847218e-02, 8.08467431e-01, 3.42081126e+00, -2.01072261e-01, 3.42081126e+00, 1.54924596e+01, -9.06153697e-01, -2.01072261e-01, -9.06153697e-01, 5.30193262e-02 ] places = 6 for ii in range(p.size): self.assertAlmostEqual(p[ii], refp[ii], places=places)
def test_descriptor_two_sides(self): jfile = 'water_se_a_type.json' jdata = j_loader(jfile) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 2 test_size = 1 stop_batch = j_must_have(jdata, 'stop_batch') rcut = j_must_have(jdata['model']['descriptor'], 'rcut') sel = j_must_have(jdata['model']['descriptor'], 'sel') ntypes = len(sel) data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt=None) test_data = data.get_test() numb_test = 1 # set parameters jdata['model']['descriptor']['neuron'] = [5, 5, 5] jdata['model']['descriptor']['axis_neuron'] = 2 typeebd_param = { 'neuron': [5, 5, 5], 'resnet_dt': False, 'seed': 1, } # init models typeebd = TypeEmbedNet(neuron=typeebd_param['neuron'], resnet_dt=typeebd_param['resnet_dt'], seed=typeebd_param['seed'], uniform_seed=True) jdata['model']['descriptor'].pop('type', None) descrpt = DescrptSeA(**jdata['model']['descriptor'], uniform_seed=True) # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']]) input_data = { 'coord': [test_data['coord']], 'box': [test_data['box']], 'type': [test_data['type']], 'natoms_vec': [test_data['natoms_vec']], 'default_mesh': [test_data['default_mesh']] } descrpt.bias_atom_e = data.compute_energy_shift() t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') t_energy = tf.placeholder(GLOBAL_ENER_FLOAT_PRECISION, [None], name='t_energy') t_force = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_force') t_virial = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_virial') t_atom_ener = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_atom_ener') t_coord = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='i_coord') t_type = tf.placeholder(tf.int32, [None], name='i_type') t_natoms = tf.placeholder(tf.int32, [ntypes + 2], name='i_natoms') t_box = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None, 9], name='i_box') t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') is_training = tf.placeholder(tf.bool) t_fparam = None type_embedding = typeebd.build(ntypes, suffix="_se_a_type_des_ebd_2sdies") dout \ = descrpt.build( t_coord, t_type, t_natoms, t_box, t_mesh, {'type_embedding' : type_embedding}, reuse = False, suffix = "_se_a_type_des_2sides" ) feed_dict_test = { t_prop_c: test_data['prop_c'], t_energy: test_data['energy'][:numb_test], t_force: np.reshape(test_data['force'][:numb_test, :], [-1]), t_virial: np.reshape(test_data['virial'][:numb_test, :], [-1]), t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :], [-1]), t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]), t_box: test_data['box'][:numb_test, :], t_type: np.reshape(test_data['type'][:numb_test, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], is_training: False } sess = self.test_session().__enter__() sess.run(tf.global_variables_initializer()) [model_dout] = sess.run([dout], feed_dict=feed_dict_test) model_dout = model_dout.reshape([-1]) ref_dout = [ 0.0005722682145569174, -0.00020202686217742682, -0.00020202686217742682, 7.13250554992363e-05, -0.0014770058171250015, 0.000521468690207748, -0.001143865186937176, 0.0004038453384193948, 0.0005617335409639567, -0.00019831394075147532, 0.00048086740718842236, -0.0001693584775806112, -0.0001693584775806112, 5.966987137476082e-05, -0.0012342029581315136, 0.00043492340851472783, -0.0009566016612537016, 0.00033706767041080107, 0.00047065988464132244, -0.0001657950398095401, 0.0003647849239740657, -0.00013744939018250384, -0.00013744939018250384, 5.1825826955234744e-05, -0.00096004206555711, 0.00036185565262332876, -0.0007267433909643961, 0.0002738914365542745, 0.00038019365906978136, -0.00014322754331896057, 0.0004675256930823109, -0.00017634410399626168, -0.00017634410399626168, 6.652672908755666e-05, -0.0012328062885292486, 0.00046500213384094614, -0.0009328887521346069, 0.0003518668613172834, 0.0004877847509912577, -0.00018396318824508986, 0.0005154794374703516, -0.00019422534512034776, -0.00019422534512034776, 7.318151797939947e-05, -0.0013576642997136488, 0.0005115548790018505, -0.0010275333676074971, 0.00038716440070070385, 0.0005376426714609369, -0.00020257810468163985, 0.0004482204892297628, -0.00016887749501640607, -0.00016887749501640607, 6.364643102775375e-05, -0.001181345877677835, 0.0004452029242063362, -0.0008941636427724908, 0.0003369586197174627, 0.0004677878512312651, -0.00017625260641095753 ] places = 10 np.testing.assert_almost_equal(model_dout, ref_dout, places)
def _init_param(self, jdata): # model config model_param = j_must_have(jdata, 'model') descrpt_param = j_must_have(model_param, 'descriptor') fitting_param = j_must_have(model_param, 'fitting_net') # descriptor descrpt_type = j_must_have(descrpt_param, 'type') if descrpt_type == 'loc_frame': self.descrpt = DescrptLocFrame(descrpt_param) elif descrpt_type == 'se_a': self.descrpt = DescrptSeA(descrpt_param) elif descrpt_type == 'se_r': self.descrpt = DescrptSeR(descrpt_param) elif descrpt_type == 'se_ar': self.descrpt = DescrptSeAR(descrpt_param) else: raise RuntimeError('unknow model type ' + descrpt_type) # fitting net try: fitting_type = fitting_param['type'] except: fitting_type = 'ener' if fitting_type == 'ener': self.fitting = EnerFitting(fitting_param, self.descrpt) elif fitting_type == 'wfc': self.fitting = WFCFitting(fitting_param, self.descrpt) elif fitting_type == 'dipole': if descrpt_type == 'se_a': self.fitting = DipoleFittingSeA(fitting_param, self.descrpt) else: raise RuntimeError( 'fitting dipole only supports descrptors: se_a') elif fitting_type == 'polar': if descrpt_type == 'loc_frame': self.fitting = PolarFittingLocFrame(fitting_param, self.descrpt) elif descrpt_type == 'se_a': self.fitting = PolarFittingSeA(fitting_param, self.descrpt) else: raise RuntimeError( 'fitting polar only supports descrptors: loc_frame and se_a' ) elif fitting_type == 'global_polar': if descrpt_type == 'se_a': self.fitting = GlobalPolarFittingSeA(fitting_param, self.descrpt) else: raise RuntimeError( 'fitting global_polar only supports descrptors: loc_frame and se_a' ) else: raise RuntimeError('unknow fitting type ' + fitting_type) # init model # infer model type by fitting_type if fitting_type == Model.model_type: self.model = Model(model_param, self.descrpt, self.fitting) elif fitting_type == 'wfc': self.model = WFCModel(model_param, self.descrpt, self.fitting) elif fitting_type == 'dipole': self.model = DipoleModel(model_param, self.descrpt, self.fitting) elif fitting_type == 'polar': self.model = PolarModel(model_param, self.descrpt, self.fitting) elif fitting_type == 'global_polar': self.model = GlobalPolarModel(model_param, self.descrpt, self.fitting) else: raise RuntimeError('get unknown fitting type when building model') # learning rate lr_param = j_must_have(jdata, 'learning_rate') try: lr_type = lr_param['type'] except: lr_type = 'exp' if lr_type == 'exp': self.lr = LearningRateExp(lr_param) else: raise RuntimeError('unknown learning_rate type ' + lr_type) # loss # infer loss type by fitting_type try: loss_param = jdata['loss'] loss_type = loss_param.get('type', 'std') except: loss_param = None loss_type = 'std' if fitting_type == 'ener': if loss_type == 'std': self.loss = EnerStdLoss( loss_param, starter_learning_rate=self.lr.start_lr()) elif loss_type == 'ener_dipole': self.loss = EnerDipoleLoss( loss_param, starter_learning_rate=self.lr.start_lr()) else: raise RuntimeError('unknow loss type') elif fitting_type == 'wfc': self.loss = TensorLoss(loss_param, model=self.model, tensor_name='wfc', tensor_size=self.model.get_out_size(), label_name='wfc') elif fitting_type == 'dipole': self.loss = TensorLoss(loss_param, model=self.model, tensor_name='dipole', tensor_size=3, label_name='dipole') elif fitting_type == 'polar': self.loss = TensorLoss(loss_param, model=self.model, tensor_name='polar', tensor_size=9, label_name='polarizability') elif fitting_type == 'global_polar': self.loss = TensorLoss(loss_param, model=self.model, tensor_name='global_polar', tensor_size=9, atomic=False, label_name='polarizability') else: raise RuntimeError( 'get unknown fitting type when building loss function') # training training_param = j_must_have(jdata, 'training') tr_args = ClassArg()\ .add('numb_test', int, default = 1)\ .add('disp_file', str, default = 'lcurve.out')\ .add('disp_freq', int, default = 100)\ .add('save_freq', int, default = 1000)\ .add('save_ckpt', str, default = 'model.ckpt')\ .add('display_in_training', bool, default = True)\ .add('timing_in_training', bool, default = True)\ .add('profiling', bool, default = False)\ .add('profiling_file',str, default = 'timeline.json')\ .add('sys_probs', list )\ .add('auto_prob_style', str, default = "prob_sys_size") tr_data = tr_args.parse(training_param) self.numb_test = tr_data['numb_test'] self.disp_file = tr_data['disp_file'] self.disp_freq = tr_data['disp_freq'] self.save_freq = tr_data['save_freq'] self.save_ckpt = tr_data['save_ckpt'] self.display_in_training = tr_data['display_in_training'] self.timing_in_training = tr_data['timing_in_training'] self.profiling = tr_data['profiling'] self.profiling_file = tr_data['profiling_file'] self.sys_probs = tr_data['sys_probs'] self.auto_prob_style = tr_data['auto_prob_style'] self.useBN = False if fitting_type == 'ener' and self.fitting.get_numb_fparam() > 0: self.numb_fparam = self.fitting.get_numb_fparam() else: self.numb_fparam = 0
def test_fitting(self): jfile = 'water_se_a_type.json' jdata = j_loader(jfile) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 1 test_size = 1 stop_batch = j_must_have(jdata, 'stop_batch') rcut = j_must_have(jdata['model']['descriptor'], 'rcut') sel = j_must_have(jdata['model']['descriptor'], 'sel') ntypes = len(sel) data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt=None) test_data = data.get_test() numb_test = 1 jdata['model']['descriptor']['neuron'] = [5, 5, 5] jdata['model']['descriptor']['axis_neuron'] = 2 jdata['model']['descriptor'].pop('type', None) descrpt = DescrptSeA(**jdata['model']['descriptor'], uniform_seed=True) jdata['model']['fitting_net']['descrpt'] = descrpt fitting = EnerFitting(**jdata['model']['fitting_net'], uniform_seed=True) # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']]) input_data = { 'coord': [test_data['coord']], 'box': [test_data['box']], 'type': [test_data['type']], 'natoms_vec': [test_data['natoms_vec']], 'default_mesh': [test_data['default_mesh']] } t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') t_energy = tf.placeholder(GLOBAL_ENER_FLOAT_PRECISION, [None], name='t_energy') t_force = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_force') t_virial = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_virial') t_atom_ener = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_atom_ener') t_coord = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='i_coord') t_type = tf.placeholder(tf.int32, [None], name='i_type') t_natoms = tf.placeholder(tf.int32, [ntypes + 2], name='i_natoms') t_box = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None, 9], name='i_box') t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') is_training = tf.placeholder(tf.bool) t_fparam = None dout = np.array([ 0.0005722682145569174, -0.00020202686217742682, -0.00020202686217742682, 7.13250554992363e-05, -0.0014770058171250015, 0.000521468690207748, -0.001143865186937176, 0.0004038453384193948, 0.0005617335409639567, -0.00019831394075147532, 0.00048086740718842236, -0.0001693584775806112, -0.0001693584775806112, 5.966987137476082e-05, -0.0012342029581315136, 0.00043492340851472783, -0.0009566016612537016, 0.00033706767041080107, 0.00047065988464132244, -0.0001657950398095401, 0.0003647849239740657, -0.00013744939018250384, -0.00013744939018250384, 5.1825826955234744e-05, -0.00096004206555711, 0.00036185565262332876, -0.0007267433909643961, 0.0002738914365542745, 0.00038019365906978136, -0.00014322754331896057, 0.0004675256930823109, -0.00017634410399626168, -0.00017634410399626168, 6.652672908755666e-05, -0.0012328062885292486, 0.00046500213384094614, -0.0009328887521346069, 0.0003518668613172834, 0.0004877847509912577, -0.00018396318824508986, 0.0005154794374703516, -0.00019422534512034776, -0.00019422534512034776, 7.318151797939947e-05, -0.0013576642997136488, 0.0005115548790018505, -0.0010275333676074971, 0.00038716440070070385, 0.0005376426714609369, -0.00020257810468163985, 0.0004482204892297628, -0.00016887749501640607, -0.00016887749501640607, 6.364643102775375e-05, -0.001181345877677835, 0.0004452029242063362, -0.0008941636427724908, 0.0003369586197174627, 0.0004677878512312651, -0.00017625260641095753 ]) type_embedding = np.array([ 1.4916816460764615, 0.2720153234707013, -2.4385153754181985, -1.8454294510880027, 2.874575701113528, 1.1225116575801295, 0.4204818970813372, -2.3784087249787587, -1.5053748251050598, 2.769329403073084 ]) dout = dout.reshape([-1, 10]) type_embedding = type_embedding.reshape([ntypes, -1]) atom_ener = fitting.build( tf.convert_to_tensor(dout), t_natoms, {'type_embedding': tf.convert_to_tensor(type_embedding)}, reuse=False, suffix="se_a_type_fit_") feed_dict_test = { t_prop_c: test_data['prop_c'], t_energy: test_data['energy'][:numb_test], t_force: np.reshape(test_data['force'][:numb_test, :], [-1]), t_virial: np.reshape(test_data['virial'][:numb_test, :], [-1]), t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :], [-1]), t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]), t_box: test_data['box'][:numb_test, :], t_type: np.reshape(test_data['type'][:numb_test, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], is_training: False } sess = self.test_session().__enter__() sess.run(tf.global_variables_initializer()) [pred_atom_ener] = sess.run([atom_ener], feed_dict=feed_dict_test) pred_atom_ener = pred_atom_ener.reshape([-1]) ref_atom_ener = [ 10.121733946849165, 10.121712105320634, 10.143275419743475, 10.143299785396826, 10.143311150431957, 10.143295201182019 ] places = 10 np.testing.assert_almost_equal(pred_atom_ener, ref_atom_ener, places)
def _do_work(jdata: Dict[str, Any], run_opt: RunOptions, is_compress: bool = False): """Run serial model training. Parameters ---------- jdata : Dict[str, Any] arguments read form json/yaml control file run_opt : RunOptions object with run configuration is_compress : Bool indicates whether in model compress mode Raises ------ RuntimeError If unsupported modifier type is selected for model """ # make necessary checks assert "training" in jdata # init the model model = DPTrainer(jdata, run_opt=run_opt, is_compress = is_compress) rcut = model.model.get_rcut() type_map = model.model.get_type_map() if len(type_map) == 0: ipt_type_map = None else: ipt_type_map = type_map # init random seed of data systems seed = jdata["training"].get("seed", None) if seed is not None: # avoid the same batch sequence among workers seed += run_opt.my_rank seed = seed % (2 ** 32) dp_random.seed(seed) # setup data modifier modifier = get_modifier(jdata["model"].get("modifier", None)) # decouple the training data from the model compress process train_data = None valid_data = None if not is_compress: # init data train_data = get_data(jdata["training"]["training_data"], rcut, ipt_type_map, modifier) train_data.print_summary("training") if jdata["training"].get("validation_data", None) is not None: valid_data = get_data(jdata["training"]["validation_data"], rcut, ipt_type_map, modifier) valid_data.print_summary("validation") # get training info stop_batch = j_must_have(jdata["training"], "numb_steps") model.build(train_data, stop_batch) if not is_compress: # train the model with the provided systems in a cyclic way start_time = time.time() model.train(train_data, valid_data) end_time = time.time() log.info("finished training") log.info(f"wall time: {(end_time - start_time):.3f} s") else: model.save_compressed() log.info("finished compressing")
def test_descriptor_one_side(self): jfile = 'water_se_a_type.json' jdata = j_loader(jfile) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 1 test_size = 1 stop_batch = j_must_have(jdata, 'stop_batch') rcut = j_must_have(jdata['model']['descriptor'], 'rcut') sel = j_must_have(jdata['model']['descriptor'], 'sel') ntypes = len(sel) data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt=None) test_data = data.get_test() numb_test = 1 # set parameters jdata['model']['descriptor']['neuron'] = [5, 5, 5] jdata['model']['descriptor']['axis_neuron'] = 2 jdata['model']['descriptor']['type_one_side'] = True typeebd_param = { 'neuron': [5, 5, 5], 'resnet_dt': False, 'seed': 1, } # init models typeebd = TypeEmbedNet(neuron=typeebd_param['neuron'], resnet_dt=typeebd_param['resnet_dt'], seed=typeebd_param['seed'], uniform_seed=True) jdata['model']['descriptor'].pop('type', None) descrpt = DescrptSeA(**jdata['model']['descriptor'], uniform_seed=True) # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']]) input_data = { 'coord': [test_data['coord']], 'box': [test_data['box']], 'type': [test_data['type']], 'natoms_vec': [test_data['natoms_vec']], 'default_mesh': [test_data['default_mesh']] } descrpt.bias_atom_e = data.compute_energy_shift() t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') t_energy = tf.placeholder(GLOBAL_ENER_FLOAT_PRECISION, [None], name='t_energy') t_force = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_force') t_virial = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_virial') t_atom_ener = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_atom_ener') t_coord = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='i_coord') t_type = tf.placeholder(tf.int32, [None], name='i_type') t_natoms = tf.placeholder(tf.int32, [ntypes + 2], name='i_natoms') t_box = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None, 9], name='i_box') t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') is_training = tf.placeholder(tf.bool) t_fparam = None type_embedding = typeebd.build(ntypes, suffix="_se_a_type_des_ebd_1side") dout \ = descrpt.build( t_coord, t_type, t_natoms, t_box, t_mesh, {'type_embedding' : type_embedding}, reuse = False, suffix = "_se_a_type_des_1side" ) feed_dict_test = { t_prop_c: test_data['prop_c'], t_energy: test_data['energy'][:numb_test], t_force: np.reshape(test_data['force'][:numb_test, :], [-1]), t_virial: np.reshape(test_data['virial'][:numb_test, :], [-1]), t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :], [-1]), t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]), t_box: test_data['box'][:numb_test, :], t_type: np.reshape(test_data['type'][:numb_test, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], is_training: False } sess = self.test_session().__enter__() sess.run(tf.global_variables_initializer()) [model_dout] = sess.run([dout], feed_dict=feed_dict_test) model_dout = model_dout.reshape([-1]) ref_dout = [ 0.0009704469114440277, 0.0007136310372560243, 0.0007136310372560243, 0.000524968274824758, -0.0019790100690810016, -0.0014556100390424947, -0.001318691223889266, -0.0009698525512440269, 0.001937780602605409, 0.0014251755182315322, 0.0008158935519461114, 0.0005943870925895051, 0.0005943870925895051, 0.0004340263490412088, -0.0016539827195947239, -0.0012066241021841376, -0.0011042186455562336, -0.0008051343572505189, 0.0016229491738044255, 0.0011833923257801077, 0.0006020440527161554, 0.00047526899287409847, 0.00047526899287409847, 0.00037538142786805136, -0.0012811397377036637, -0.0010116898098710776, -0.0008465095301785942, -0.0006683577463042215, 0.0012459039620461505, 0.0009836962283627838, 0.00077088529431722, 0.0006105807630364827, 0.0006105807630364827, 0.00048361458700877996, -0.0016444700616024337, -0.001302510079662288, -0.0010856603485807576, -0.0008598975276238373, 0.00159730642327918, 0.001265146946434076, 0.0008495806081447204, 0.000671787466824433, 0.000671787466824433, 0.0005312928157964384, -0.0018105890543181475, -0.001431844407277983, -0.0011956722392735362, -0.000945544277375045, 0.0017590147511761475, 0.0013910348287283414, 0.0007393644735054756, 0.0005850536182149991, 0.0005850536182149991, 0.0004631887654949332, -0.0015760302086346792, -0.0012475134925387294, -0.001041074331192672, -0.0008239586048523492, 0.0015319673563669856, 0.0012124704278707746 ] places = 10 np.testing.assert_almost_equal(model_dout, ref_dout, places)
def test_model(self): jfile = 'wfc.json' with open(jfile) as fp: jdata = json.load(fp) run_opt = RunOptions(None) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 1 test_size = 1 stop_batch = j_must_have(jdata, 'stop_batch') rcut = j_must_have(jdata['model']['descriptor'], 'rcut') data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt=None) test_data = data.get_test() numb_test = 1 descrpt = DescrptLocFrame(jdata['model']['descriptor']) fitting = WFCFitting(jdata['model']['fitting_net'], descrpt) model = WFCModel(jdata['model'], descrpt, fitting) input_data = { 'coord': [test_data['coord']], 'box': [test_data['box']], 'type': [test_data['type']], 'natoms_vec': [test_data['natoms_vec']], 'default_mesh': [test_data['default_mesh']], 'fparam': [test_data['fparam']], } model._compute_dstats(input_data) t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') t_energy = tf.placeholder(global_ener_float_precision, [None], name='t_energy') t_force = tf.placeholder(global_tf_float_precision, [None], name='t_force') t_virial = tf.placeholder(global_tf_float_precision, [None], name='t_virial') t_atom_ener = tf.placeholder(global_tf_float_precision, [None], name='t_atom_ener') t_coord = tf.placeholder(global_tf_float_precision, [None], name='i_coord') t_type = tf.placeholder(tf.int32, [None], name='i_type') t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2], name='i_natoms') t_box = tf.placeholder(global_tf_float_precision, [None, 9], name='i_box') t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') is_training = tf.placeholder(tf.bool) t_fparam = None model_pred \ = model.build (t_coord, t_type, t_natoms, t_box, t_mesh, t_fparam, suffix = "wfc", reuse = False) wfc = model_pred['wfc'] feed_dict_test = { t_prop_c: test_data['prop_c'], t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]), t_box: test_data['box'][:numb_test, :], t_type: np.reshape(test_data['type'][:numb_test, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], is_training: False } sess = tf.Session() sess.run(tf.global_variables_initializer()) [p] = sess.run([wfc], feed_dict=feed_dict_test) p = p.reshape([-1]) refp = [ -9.105016838228578990e-01, 7.196284362034099935e-01, -9.548516928185298014e-02, 2.764615027095288724e+00, 2.661319598995644520e-01, 7.579512949131941846e-02, -2.107409067376114997e+00, -1.299080016614967414e-01, -5.962778584850070285e-01, 2.913899917663253514e-01, -1.226917174638697094e+00, 1.829523069930876655e+00, 1.015704024959750873e+00, -1.792333611099589386e-01, 5.032898080485321834e-01, 1.808561721292949453e-01, 2.468863482075112081e+00, -2.566442546384765100e-01, -1.467453783795173994e-01, -1.822963931552128658e+00, 5.843600156865462747e-01, -1.493875280832117403e+00, 1.693322352814763398e-01, -1.877325443995481624e+00 ] places = 6 for ii in range(p.size): self.assertAlmostEqual(p[ii], refp[ii], places=places)
def test_model(self): jfile = 'water_se_r.json' with open(jfile) as fp: jdata = json.load (fp) run_opt = RunOptions(None) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 1 test_size = 1 stop_batch = j_must_have(jdata, 'stop_batch') rcut = j_must_have (jdata['model']['descriptor'], 'rcut') data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt = None) test_data = data.get_test () numb_test = 1 descrpt = DescrptSeR(jdata['model']['descriptor']) fitting = EnerFitting(jdata['model']['fitting_net'], descrpt) model = Model(jdata['model'], descrpt, fitting) # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']]) input_data = {'coord' : [test_data['coord']], 'box': [test_data['box']], 'type': [test_data['type']], 'natoms_vec' : [test_data['natoms_vec']], 'default_mesh' : [test_data['default_mesh']] } model._compute_input_stat(input_data) model.descrpt.bias_atom_e = data.compute_energy_shift() t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') t_energy = tf.placeholder(global_ener_float_precision, [None], name='t_energy') t_force = tf.placeholder(global_tf_float_precision, [None], name='t_force') t_virial = tf.placeholder(global_tf_float_precision, [None], name='t_virial') t_atom_ener = tf.placeholder(global_tf_float_precision, [None], name='t_atom_ener') t_coord = tf.placeholder(global_tf_float_precision, [None], name='i_coord') t_type = tf.placeholder(tf.int32, [None], name='i_type') t_natoms = tf.placeholder(tf.int32, [model.ntypes+2], name='i_natoms') t_box = tf.placeholder(global_tf_float_precision, [None, 9], name='i_box') t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') is_training = tf.placeholder(tf.bool) t_fparam = None model_pred\ = model.build (t_coord, t_type, t_natoms, t_box, t_mesh, t_fparam, suffix = "se_r", reuse = False) energy = model_pred['energy'] force = model_pred['force'] virial = model_pred['virial'] atom_ener = model_pred['atom_ener'] feed_dict_test = {t_prop_c: test_data['prop_c'], t_energy: test_data['energy'] [:numb_test], t_force: np.reshape(test_data['force'] [:numb_test, :], [-1]), t_virial: np.reshape(test_data['virial'] [:numb_test, :], [-1]), t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :], [-1]), t_coord: np.reshape(test_data['coord'] [:numb_test, :], [-1]), t_box: test_data['box'] [:numb_test, :], t_type: np.reshape(test_data['type'] [:numb_test, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], is_training: False} sess = tf.Session() sess.run(tf.global_variables_initializer()) [e, f, v] = sess.run([energy, force, virial], feed_dict = feed_dict_test) e = e.reshape([-1]) f = f.reshape([-1]) v = v.reshape([-1]) refe = [6.152085988309423925e+01] reff = [-1.714443151616400110e-04,-1.315836609370952051e-04,-5.584120460897444674e-06,-7.197863450669731334e-05,-1.384609799994930676e-04,8.856091902774708468e-06,1.120578238869146797e-04,-7.428703645877488470e-05,9.370560731488587317e-07,-1.048347129617610465e-04,1.977876923815685781e-04,7.522050342771599598e-06,2.361772659657814205e-04,-5.774651813388292487e-05,-1.233143271630744828e-05,2.257277740226381951e-08,2.042905031476775584e-04,6.003548585097267914e-07] refv = [1.035180911513190792e-03,-1.118982949050497126e-04,-2.383287813436022850e-05,-1.118982949050497126e-04,4.362023915782403281e-04,8.119543218224559240e-06,-2.383287813436022850e-05,8.119543218224559240e-06,1.201142938802945237e-06] refe = np.reshape(refe, [-1]) reff = np.reshape(reff, [-1]) refv = np.reshape(refv, [-1]) places = 6 for ii in range(e.size) : self.assertAlmostEqual(e[ii], refe[ii], places = places) for ii in range(f.size) : self.assertAlmostEqual(f[ii], reff[ii], places = places) for ii in range(v.size) : self.assertAlmostEqual(v[ii], refv[ii], places = places)
def test_model(self): jfile = 'polar_se_a.json' jdata = j_loader(jfile) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 1 test_size = 1 stop_batch = j_must_have(jdata, 'stop_batch') rcut = j_must_have (jdata['model']['descriptor'], 'rcut') data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt = None) test_data = data.get_test () numb_test = 1 jdata['model']['descriptor'].pop('type', None) descrpt = DescrptSeA(**jdata['model']['descriptor'], uniform_seed = True) jdata['model']['fitting_net'].pop('type', None) jdata['model']['fitting_net'].pop('fit_diag', None) jdata['model']['fitting_net']['descrpt'] = descrpt fitting = DipoleFittingSeA(**jdata['model']['fitting_net'], uniform_seed = True) model = DipoleModel(descrpt, fitting) # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']]) input_data = {'coord' : [test_data['coord']], 'box': [test_data['box']], 'type': [test_data['type']], 'natoms_vec' : [test_data['natoms_vec']], 'default_mesh' : [test_data['default_mesh']], 'fparam': [test_data['fparam']], } model._compute_input_stat(input_data) t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') t_energy = tf.placeholder(GLOBAL_ENER_FLOAT_PRECISION, [None], name='t_energy') t_force = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_force') t_virial = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_virial') t_atom_ener = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_atom_ener') t_coord = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='i_coord') t_type = tf.placeholder(tf.int32, [None], name='i_type') t_natoms = tf.placeholder(tf.int32, [model.ntypes+2], name='i_natoms') t_box = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None, 9], name='i_box') t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') is_training = tf.placeholder(tf.bool) t_fparam = None model_pred \ = model.build (t_coord, t_type, t_natoms, t_box, t_mesh, t_fparam, suffix = "dipole_se_a", reuse = False) dipole = model_pred['dipole'] gdipole = model_pred['global_dipole'] force = model_pred['force'] virial = model_pred['virial'] atom_virial = model_pred['atom_virial'] feed_dict_test = {t_prop_c: test_data['prop_c'], t_coord: np.reshape(test_data['coord'] [:numb_test, :], [-1]), t_box: test_data['box'] [:numb_test, :], t_type: np.reshape(test_data['type'] [:numb_test, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], is_training: False} sess = self.test_session().__enter__() sess.run(tf.global_variables_initializer()) [p, gp] = sess.run([dipole, gdipole], feed_dict = feed_dict_test) p = p.reshape([-1]) refp = [1.616802262298876514e+01,9.809535439521079425e+00,3.572312180768947854e-01,1.336308874095981203e+00,1.057908563208963848e+01,-5.999602350098874881e-01] places = 10 np.testing.assert_almost_equal(p, refp, places) gp = gp.reshape([-1]) refgp = np.array(refp).reshape(-1, 3).sum(0) places = 9 np.testing.assert_almost_equal(gp, refgp, places) # make sure only one frame is used feed_dict_single = {t_prop_c: test_data['prop_c'], t_coord: np.reshape(test_data['coord'] [:1, :], [-1]), t_box: test_data['box'] [:1, :], t_type: np.reshape(test_data['type'] [:1, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], is_training: False} [pf, pv, pav] = sess.run([force, virial, atom_virial], feed_dict = feed_dict_single) pf, pv = pf.reshape(-1), pv.reshape(-1) spv = pav.reshape(1, 3, -1, 9).sum(2).reshape(-1) base_dict = feed_dict_single.copy() coord0 = base_dict.pop(t_coord) box0 = base_dict.pop(t_box) fdf = - finite_difference( lambda coord: sess.run(gdipole, feed_dict={**base_dict, t_coord:coord, t_box:box0}).reshape(-1), test_data['coord'][:numb_test, :].reshape([-1])).reshape(-1) fdv = - (finite_difference( lambda box: sess.run(gdipole, feed_dict={**base_dict, t_coord:strerch_box(coord0, box0, box), t_box:box}).reshape(-1), test_data['box'][:numb_test, :]).reshape([-1,3,3]).transpose(0,2,1) @ box0.reshape(3,3)).reshape(-1) delta = 1e-5 np.testing.assert_allclose(pf, fdf, delta) np.testing.assert_allclose(pv, fdv, delta) # make sure atomic virial sum to virial places = 10 np.testing.assert_almost_equal(pv, spv, places)
def test_model(self): jfile = 'water_se_a.json' with open(jfile) as fp: jdata = json.load(fp) run_opt = RunOptions(None) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 1 test_size = 1 stop_batch = j_must_have(jdata, 'stop_batch') rcut = j_must_have(jdata['model']['descriptor'], 'rcut') data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt=None) test_data = data.get_test() numb_test = 1 descrpt = DescrptSeA(jdata['model']['descriptor']) fitting = EnerFitting(jdata['model']['fitting_net'], descrpt) model = Model(jdata['model'], descrpt, fitting) # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']]) input_data = { 'coord': [test_data['coord']], 'box': [test_data['box']], 'type': [test_data['type']], 'natoms_vec': [test_data['natoms_vec']], 'default_mesh': [test_data['default_mesh']] } model._compute_dstats(input_data) model.bias_atom_e = data.compute_energy_shift() t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') t_energy = tf.placeholder(global_ener_float_precision, [None], name='t_energy') t_force = tf.placeholder(global_tf_float_precision, [None], name='t_force') t_virial = tf.placeholder(global_tf_float_precision, [None], name='t_virial') t_atom_ener = tf.placeholder(global_tf_float_precision, [None], name='t_atom_ener') t_coord = tf.placeholder(global_tf_float_precision, [None], name='i_coord') t_type = tf.placeholder(tf.int32, [None], name='i_type') t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2], name='i_natoms') t_box = tf.placeholder(global_tf_float_precision, [None, 9], name='i_box') t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') is_training = tf.placeholder(tf.bool) t_fparam = None model_pred \ = model.build (t_coord, t_type, t_natoms, t_box, t_mesh, t_fparam, suffix = "se_a", reuse = False) energy = model_pred['energy'] force = model_pred['force'] virial = model_pred['virial'] atom_ener = model_pred['atom_ener'] feed_dict_test = { t_prop_c: test_data['prop_c'], t_energy: test_data['energy'][:numb_test], t_force: np.reshape(test_data['force'][:numb_test, :], [-1]), t_virial: np.reshape(test_data['virial'][:numb_test, :], [-1]), t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :], [-1]), t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]), t_box: test_data['box'][:numb_test, :], t_type: np.reshape(test_data['type'][:numb_test, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], is_training: False } sess = tf.Session() sess.run(tf.global_variables_initializer()) [e, f, v] = sess.run([energy, force, virial], feed_dict=feed_dict_test) e = e.reshape([-1]) f = f.reshape([-1]) v = v.reshape([-1]) refe = [6.135449167779321300e+01] reff = [ 7.799691562262310585e-02, 9.423098804815030483e-02, 3.790560997388224204e-03, 1.432522403799846578e-01, 1.148392791403983204e-01, -1.321871172563671148e-02, -7.318966526325138000e-02, 6.516069212737778116e-02, 5.406418483320515412e-04, 5.870713761026503247e-02, -1.605402669549013672e-01, -5.089516979826595386e-03, -2.554593467731766654e-01, 3.092063507347833987e-02, 1.510355029451411479e-02, 4.869271842355533952e-02, -1.446113274345035005e-01, -1.126524434771078789e-03 ] refv = [ -6.076776685178300053e-01, 1.103174323630009418e-01, 1.984250991380156690e-02, 1.103174323630009557e-01, -3.319759402259439551e-01, -6.007404107650986258e-03, 1.984250991380157036e-02, -6.007404107650981921e-03, -1.200076017439753642e-03 ] refe = np.reshape(refe, [-1]) reff = np.reshape(reff, [-1]) refv = np.reshape(refv, [-1]) places = 10 for ii in range(e.size): self.assertAlmostEqual(e[ii], refe[ii], places=places) for ii in range(f.size): self.assertAlmostEqual(f[ii], reff[ii], places=places) for ii in range(v.size): self.assertAlmostEqual(v[ii], refv[ii], places=places)
def test_model(self): jfile = 'water_se_a_srtab.json' jdata = j_loader(jfile) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 1 test_size = 1 stop_batch = j_must_have(jdata, 'stop_batch') rcut = j_must_have (jdata['model']['descriptor'], 'rcut') data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt = None) test_data = data.get_test () numb_test = 1 jdata['model']['descriptor'].pop('type', None) descrpt = DescrptSeA(**jdata['model']['descriptor'], uniform_seed = True) jdata['model']['fitting_net']['descrpt'] = descrpt fitting = EnerFitting(**jdata['model']['fitting_net'], uniform_seed = True) # descrpt = DescrptSeA(jdata['model']['descriptor']) # fitting = EnerFitting(jdata['model']['fitting_net'], descrpt) model = EnerModel( descrpt, fitting, None, jdata['model'].get('type_map'), jdata['model'].get('data_stat_nbatch'), jdata['model'].get('data_stat_protect'), jdata['model'].get('use_srtab'), jdata['model'].get('smin_alpha'), jdata['model'].get('sw_rmin'), jdata['model'].get('sw_rmax') ) # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']]) input_data = {'coord' : [test_data['coord']], 'box': [test_data['box']], 'type': [test_data['type']], 'natoms_vec' : [test_data['natoms_vec']], 'default_mesh' : [test_data['default_mesh']] } model._compute_input_stat(input_data) model.descrpt.bias_atom_e = data.compute_energy_shift() t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') t_energy = tf.placeholder(GLOBAL_ENER_FLOAT_PRECISION, [None], name='t_energy') t_force = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_force') t_virial = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_virial') t_atom_ener = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='t_atom_ener') t_coord = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None], name='i_coord') t_type = tf.placeholder(tf.int32, [None], name='i_type') t_natoms = tf.placeholder(tf.int32, [model.ntypes+2], name='i_natoms') t_box = tf.placeholder(GLOBAL_TF_FLOAT_PRECISION, [None, 9], name='i_box') t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') is_training = tf.placeholder(tf.bool) t_fparam = None model_pred\ = model.build (t_coord, t_type, t_natoms, t_box, t_mesh, t_fparam, suffix = "se_a_srtab", reuse = False) energy = model_pred['energy'] force = model_pred['force'] virial = model_pred['virial'] atom_ener = model_pred['atom_ener'] feed_dict_test = {t_prop_c: test_data['prop_c'], t_energy: test_data['energy'] [:numb_test], t_force: np.reshape(test_data['force'] [:numb_test, :], [-1]), t_virial: np.reshape(test_data['virial'] [:numb_test, :], [-1]), t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :], [-1]), t_coord: np.reshape(test_data['coord'] [:numb_test, :], [-1]), t_box: test_data['box'] [:numb_test, :], t_type: np.reshape(test_data['type'] [:numb_test, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], is_training: False} sess = self.test_session().__enter__() sess.run(tf.global_variables_initializer()) [e, f, v] = sess.run([energy, force, virial], feed_dict = feed_dict_test) e = e.reshape([-1]) f = f.reshape([-1]) v = v.reshape([-1]) refe = [1.141610882066236599e+02] reff = [-1.493121233165248043e+02,-1.831419491743885715e+02,-8.439542992300344437e+00,-1.811987095947552859e+02,-1.476380826187439084e+02,1.264271856742560018e+01,1.544377958934875323e+02,-7.816520233903435866e+00,1.287925245463442225e+00,-4.000393268449002449e+00,1.910748885843098890e+02,7.134789955349889468e+00,1.826908441979261113e+02,3.677156386479059513e+00,-1.122312112141401741e+01,-2.617413911684622008e+00,1.438445070562470391e+02,-1.402769654524568033e+00] refv = [3.585047655925112622e+02,-7.569252978336677984e+00,-1.068382043878426124e+01,-7.569252978336677096e+00,3.618439481685132932e+02,5.448668500896081568e+00,-1.068382043878426302e+01,5.448668500896082456e+00,1.050393462151727686e+00] refe = np.reshape(refe, [-1]) reff = np.reshape(reff, [-1]) refv = np.reshape(refv, [-1]) places = 10 np.testing.assert_almost_equal(e, refe, places) np.testing.assert_almost_equal(f, reff, places) np.testing.assert_almost_equal(v, refv, places)
def test_model(self): jfile = 'water.json' with open(jfile) as fp: jdata = json.load(fp) run_opt = RunOptions(None) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 1 test_size = 1 stop_batch = j_must_have(jdata, 'stop_batch') rcut = j_must_have(jdata['model']['descriptor'], 'rcut') data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt=None) test_data = data.get_test() numb_test = 1 descrpt = DescrptLocFrame(jdata['model']['descriptor']) fitting = EnerFitting(jdata['model']['fitting_net'], descrpt) model = Model(jdata['model'], descrpt, fitting) # model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']]) input_data = { 'coord': [test_data['coord']], 'box': [test_data['box']], 'type': [test_data['type']], 'natoms_vec': [test_data['natoms_vec']], 'default_mesh': [test_data['default_mesh']] } model._compute_input_stat(input_data) model.fitting.bias_atom_e = data.compute_energy_shift() t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') t_energy = tf.placeholder(global_ener_float_precision, [None], name='t_energy') t_force = tf.placeholder(global_tf_float_precision, [None], name='t_force') t_virial = tf.placeholder(global_tf_float_precision, [None], name='t_virial') t_atom_ener = tf.placeholder(global_tf_float_precision, [None], name='t_atom_ener') t_coord = tf.placeholder(global_tf_float_precision, [None], name='i_coord') t_type = tf.placeholder(tf.int32, [None], name='i_type') t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2], name='i_natoms') t_box = tf.placeholder(global_tf_float_precision, [None, 9], name='i_box') t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') is_training = tf.placeholder(tf.bool) t_fparam = None model_pred \ = model.build (t_coord, t_type, t_natoms, t_box, t_mesh, t_fparam, suffix = "loc_frame", reuse = False) energy = model_pred['energy'] force = model_pred['force'] virial = model_pred['virial'] atom_ener = model_pred['atom_ener'] feed_dict_test = { t_prop_c: test_data['prop_c'], t_energy: test_data['energy'][:numb_test], t_force: np.reshape(test_data['force'][:numb_test, :], [-1]), t_virial: np.reshape(test_data['virial'][:numb_test, :], [-1]), t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :], [-1]), t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]), t_box: test_data['box'][:numb_test, :], t_type: np.reshape(test_data['type'][:numb_test, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], is_training: False } sess = tf.Session() sess.run(tf.global_variables_initializer()) [e, f, v] = sess.run([energy, force, virial], feed_dict=feed_dict_test) e = e.reshape([-1]) f = f.reshape([-1]) v = v.reshape([-1]) refe = [1.165945032784766511e+01] reff = [ 2.356319331246305437e-01, 1.772322096063349284e-01, 1.455439548950788684e-02, 1.968599426000810226e-01, 2.648214484898352983e-01, 7.595232354012236564e-02, -2.121321856338151401e-01, -2.463886119018566037e-03, -2.075636300914874069e-02, -9.360310077571798101e-03, -1.751965198776750943e-01, -2.046405309983102827e-02, -1.990194093283037535e-01, -1.828347741191920298e-02, -6.916374506995154325e-02, -1.197997068502068031e-02, -2.461097746875573200e-01, 1.987744214930105627e-02 ] refv = [ -4.998509978510510265e-01, -1.966169437179327711e-02, 1.136130543869883977e-02, -1.966169437179334650e-02, -4.575353297894450555e-01, -2.668666556859019493e-03, 1.136130543869887100e-02, -2.668666556859039876e-03, 2.455466940358383508e-03 ] refe = np.reshape(refe, [-1]) reff = np.reshape(reff, [-1]) refv = np.reshape(refv, [-1]) places = 10 for ii in range(e.size): self.assertAlmostEqual(e[ii], refe[ii], places=places) for ii in range(f.size): self.assertAlmostEqual(f[ii], reff[ii], places=places) for ii in range(v.size): self.assertAlmostEqual(v[ii], refv[ii], places=places)
def test_model(self): jfile = 'water_se_a_fparam.json' with open(jfile) as fp: jdata = json.load(fp) run_opt = RunOptions(None) systems = j_must_have(jdata, 'systems') set_pfx = j_must_have(jdata, 'set_prefix') batch_size = j_must_have(jdata, 'batch_size') test_size = j_must_have(jdata, 'numb_test') batch_size = 1 test_size = 1 stop_batch = j_must_have(jdata, 'stop_batch') rcut = j_must_have(jdata['model']['descriptor'], 'rcut') data = DataSystem(systems, set_pfx, batch_size, test_size, rcut, run_opt=None) test_data = data.get_test() numb_test = 1 descrpt = DescrptSeA(jdata['model']['descriptor']) fitting = EnerFitting(jdata['model']['fitting_net'], descrpt) model = Model(jdata['model'], descrpt, fitting) model._compute_dstats([test_data['coord']], [test_data['box']], [test_data['type']], [test_data['natoms_vec']], [test_data['default_mesh']]) model.bias_atom_e = data.compute_energy_shift() t_prop_c = tf.placeholder(tf.float32, [5], name='t_prop_c') t_energy = tf.placeholder(global_ener_float_precision, [None], name='t_energy') t_force = tf.placeholder(global_tf_float_precision, [None], name='t_force') t_virial = tf.placeholder(global_tf_float_precision, [None], name='t_virial') t_atom_ener = tf.placeholder(global_tf_float_precision, [None], name='t_atom_ener') t_coord = tf.placeholder(global_tf_float_precision, [None], name='i_coord') t_type = tf.placeholder(tf.int32, [None], name='i_type') t_natoms = tf.placeholder(tf.int32, [model.ntypes + 2], name='i_natoms') t_box = tf.placeholder(global_tf_float_precision, [None, 9], name='i_box') t_mesh = tf.placeholder(tf.int32, [None], name='i_mesh') t_fparam = tf.placeholder(global_tf_float_precision, [None], name='i_fparam') is_training = tf.placeholder(tf.bool) input_dict = {} input_dict['fparam'] = t_fparam model_pred\ = model.build (t_coord, t_type, t_natoms, t_box, t_mesh, input_dict, suffix = "se_a_fparam", reuse = False) energy = model_pred['energy'] force = model_pred['force'] virial = model_pred['virial'] atom_ener = model_pred['atom_ener'] feed_dict_test = { t_prop_c: test_data['prop_c'], t_energy: test_data['energy'][:numb_test], t_force: np.reshape(test_data['force'][:numb_test, :], [-1]), t_virial: np.reshape(test_data['virial'][:numb_test, :], [-1]), t_atom_ener: np.reshape(test_data['atom_ener'][:numb_test, :], [-1]), t_coord: np.reshape(test_data['coord'][:numb_test, :], [-1]), t_box: test_data['box'][:numb_test, :], t_type: np.reshape(test_data['type'][:numb_test, :], [-1]), t_natoms: test_data['natoms_vec'], t_mesh: test_data['default_mesh'], t_fparam: np.reshape(test_data['fparam'][:numb_test, :], [-1]), is_training: False } sess = tf.Session() sess.run(tf.global_variables_initializer()) [e, f, v] = sess.run([energy, force, virial], feed_dict=feed_dict_test) e = e.reshape([-1]) f = f.reshape([-1]) v = v.reshape([-1]) refe = [6.135136929183754972e+01] reff = [ 7.761477777656561328e-02, 9.383013575207051205e-02, 3.776776376267230399e-03, 1.428268971463224069e-01, 1.143858253900619654e-01, -1.318441687719179231e-02, -7.271897092708884403e-02, 6.494907553857684479e-02, 5.355599592111062821e-04, 5.840910251709752199e-02, -1.599042555763417750e-01, -5.067165555590445389e-03, -2.546246315216804113e-01, 3.073296814647456451e-02, 1.505994759166155023e-02, 4.849282500878367153e-02, -1.439937492508420736e-01, -1.120701494357654411e-03 ] refv = [ -6.054303146013112480e-01, 1.097859194719944115e-01, 1.977605183964963390e-02, 1.097859194719943976e-01, -3.306167096812382966e-01, -5.978855662865613894e-03, 1.977605183964964083e-02, -5.978855662865616497e-03, -1.196331922996723236e-03 ] refe = np.reshape(refe, [-1]) reff = np.reshape(reff, [-1]) refv = np.reshape(refv, [-1]) places = 10 for ii in range(e.size): self.assertAlmostEqual(e[ii], refe[ii], places=places) for ii in range(f.size): self.assertAlmostEqual(f[ii], reff[ii], places=places) for ii in range(v.size): self.assertAlmostEqual(v[ii], refv[ii], places=places)