示例#1
0
文件: polar.py 项目: njzjz/deepmd-kit
 def __init__ (self, 
               descrpt : tf.Tensor,
               neuron : List[int] = [120,120,120],
               resnet_dt : bool = True,
               sel_type : List[int] = None,
               fit_diag : bool = True,
               scale : List[float] = None,
               diag_shift : List[float] = None,
               seed : int = None,
               activation_function : str = 'tanh',
               precision : str = 'default'
 ) -> None:
     """
     Constructor            
     """
     if not isinstance(descrpt, DescrptSeA) :
         raise RuntimeError('GlobalPolarFittingSeA only supports DescrptSeA')
     self.ntypes = descrpt.get_ntypes()
     self.dim_descrpt = descrpt.get_dim_out()
     self.polar_fitting = PolarFittingSeA(descrpt,
                                          neuron,
                                          resnet_dt,
                                          sel_type,
                                          fit_diag,
                                          scale,
                                          diag_shift,
                                          seed,
                                          activation_function,
                                          precision)
示例#2
0
 def __init__ (self, 
               descrpt : tf.Tensor,
               neuron : List[int] = [120,120,120], 
               resnet_dt : bool = True,
               sel_type : List[int] = None,
               seed : int = None,
               activation_function : str = 'tanh',
               precision : str = 'default',
               uniform_seed: bool = False
 ) -> None:
     """
     Constructor
     """
     if not isinstance(descrpt, DescrptSeA) :
         raise RuntimeError('DipoleFittingSeA only supports DescrptSeA')
     self.ntypes = descrpt.get_ntypes()
     self.dim_descrpt = descrpt.get_dim_out()
     # args = ClassArg()\
     #        .add('neuron',           list,   default = [120,120,120], alias = 'n_neuron')\
     #        .add('resnet_dt',        bool,   default = True)\
     #        .add('sel_type',         [list,int],   default = [ii for ii in range(self.ntypes)], alias = 'dipole_type')\
     #        .add('seed',             int)\
     #        .add("activation_function", str, default = "tanh")\
     #        .add('precision',           str,    default = "default")
     # class_data = args.parse(jdata)
     self.n_neuron = neuron
     self.resnet_dt = resnet_dt
     self.sel_type = sel_type
     if self.sel_type is None:
         self.sel_type = [ii for ii in range(self.ntypes)]
     self.seed = seed
     self.uniform_seed = uniform_seed
     self.seed_shift = one_layer_rand_seed_shift()
     self.fitting_activation_fn = get_activation_func(activation_function)
     self.fitting_precision = get_precision(precision)
     self.dim_rot_mat_1 = descrpt.get_dim_rot_mat_1()
     self.dim_rot_mat = self.dim_rot_mat_1 * 3
     self.useBN = False
     self.fitting_net_variables = None
     self.mixed_prec = None
示例#3
0
def embed_atom_type(
    ntypes: int,
    natoms: tf.Tensor,
    type_embedding: tf.Tensor,
):
    """
    Make the embedded type for the atoms in system.
    The atoms are assumed to be sorted according to the type, 
    thus their types are described by a `tf.Tensor` natoms, see explanation below.
    
    Parameters
    ----------
    ntypes:
        Number of types.
    natoms:
        The number of atoms. This tensor has the length of Ntypes + 2
        natoms[0]: number of local atoms
        natoms[1]: total number of atoms held by this processor
        natoms[i]: 2 <= i < Ntypes+2, number of type i atoms
    type_embedding:
        The type embedding. 
        It has the shape of [ntypes, embedding_dim]

    Returns
    -------
    atom_embedding
        The embedded type of each atom. 
        It has the shape of [numb_atoms, embedding_dim]
    """
    te_out_dim = type_embedding.get_shape().as_list()[-1]
    atype = []
    for ii in range(ntypes):
        atype.append(tf.tile([ii], [natoms[2 + ii]]))
    atype = tf.concat(atype, axis=0)
    atm_embed = tf.nn.embedding_lookup(
        type_embedding, tf.cast(atype, dtype=tf.int32))  #(nf*natom)*nchnl
    atm_embed = tf.reshape(atm_embed, [-1, te_out_dim])
    return atm_embed
示例#4
0
文件: ener.py 项目: njzjz/deepmd-kit
    def __init__(self,
                 descrpt: tf.Tensor,
                 neuron: List[int] = [120, 120, 120],
                 resnet_dt: bool = True,
                 numb_fparam: int = 0,
                 numb_aparam: int = 0,
                 rcond: float = 1e-3,
                 tot_ener_zero: bool = False,
                 trainable: List[bool] = None,
                 seed: int = None,
                 atom_ener: List[float] = [],
                 activation_function: str = 'tanh',
                 precision: str = 'default',
                 uniform_seed: bool = False) -> None:
        """
        Constructor
        """
        # model param
        self.ntypes = descrpt.get_ntypes()
        self.dim_descrpt = descrpt.get_dim_out()
        # args = ()\
        #        .add('numb_fparam',      int,    default = 0)\
        #        .add('numb_aparam',      int,    default = 0)\
        #        .add('neuron',           list,   default = [120,120,120], alias = 'n_neuron')\
        #        .add('resnet_dt',        bool,   default = True)\
        #        .add('rcond',            float,  default = 1e-3) \
        #        .add('tot_ener_zero',    bool,   default = False) \
        #        .add('seed',             int)               \
        #        .add('atom_ener',        list,   default = [])\
        #        .add("activation_function", str,    default = "tanh")\
        #        .add("precision",           str, default = "default")\
        #        .add("trainable",        [list, bool], default = True)
        self.numb_fparam = numb_fparam
        self.numb_aparam = numb_aparam
        self.n_neuron = neuron
        self.resnet_dt = resnet_dt
        self.rcond = rcond
        self.seed = seed
        self.uniform_seed = uniform_seed
        self.seed_shift = one_layer_rand_seed_shift()
        self.tot_ener_zero = tot_ener_zero
        self.fitting_activation_fn = get_activation_func(activation_function)
        self.fitting_precision = get_precision(precision)
        self.trainable = trainable
        if self.trainable is None:
            self.trainable = [True for ii in range(len(self.n_neuron) + 1)]
        if type(self.trainable) is bool:
            self.trainable = [self.trainable] * (len(self.n_neuron) + 1)
        assert (len(self.trainable) == len(self.n_neuron) +
                1), 'length of trainable should be that of n_neuron + 1'
        self.atom_ener = []
        self.atom_ener_v = atom_ener
        for at, ae in enumerate(atom_ener):
            if ae is not None:
                self.atom_ener.append(
                    tf.constant(ae,
                                self.fitting_precision,
                                name="atom_%d_ener" % at))
            else:
                self.atom_ener.append(None)
        self.useBN = False
        self.bias_atom_e = np.zeros(self.ntypes, dtype=np.float64)
        # data requirement
        if self.numb_fparam > 0:
            add_data_requirement('fparam',
                                 self.numb_fparam,
                                 atomic=False,
                                 must=True,
                                 high_prec=False)
            self.fparam_avg = None
            self.fparam_std = None
            self.fparam_inv_std = None
        if self.numb_aparam > 0:
            add_data_requirement('aparam',
                                 self.numb_aparam,
                                 atomic=True,
                                 must=True,
                                 high_prec=False)
            self.aparam_avg = None
            self.aparam_std = None
            self.aparam_inv_std = None

        self.fitting_net_variables = None
        self.mixed_prec = None
示例#5
0
文件: polar.py 项目: njzjz/deepmd-kit
    def __init__ (self, 
                  descrpt : tf.Tensor,
                  neuron : List[int] = [120,120,120],
                  resnet_dt : bool = True,
                  sel_type : List[int] = None,
                  fit_diag : bool = True,
                  scale : List[float] = None,
                  shift_diag : bool = True,     # YWolfeee: will support the user to decide whether to use this function
                  #diag_shift : List[float] = None, YWolfeee: will not support the user to assign a shift
                  seed : int = None,
                  activation_function : str = 'tanh',
                  precision : str = 'default',
                  uniform_seed: bool = False                  
    ) -> None:
        """
        Constructor

        Parameters
        ----------
        descrpt : tf.Tensor
                The descrptor
        neuron : List[int]
                Number of neurons in each hidden layer of the fitting net
        resnet_dt : bool
                Time-step `dt` in the resnet construction:
                y = x + dt * \phi (Wx + b)
        sel_type : List[int]
                The atom types selected to have an atomic polarizability prediction. If is None, all atoms are selected.
        fit_diag : bool
                Fit the diagonal part of the rotational invariant polarizability matrix, which will be converted to normal polarizability matrix by contracting with the rotation matrix.
        scale : List[float]
                The output of the fitting net (polarizability matrix) for type i atom will be scaled by scale[i]
        diag_shift : List[float]
                The diagonal part of the polarizability matrix of type i will be shifted by diag_shift[i]. The shift operation is carried out after scale.        
        seed : int
                Random seed for initializing the network parameters.
        activation_function : str
                The activation function in the embedding net. Supported options are {0}
        precision : str
                The precision of the embedding net parameters. Supported options are {1}                
        uniform_seed
                Only for the purpose of backward compatibility, retrieves the old behavior of using the random seed
        """
        if not isinstance(descrpt, DescrptSeA) :
            raise RuntimeError('PolarFittingSeA only supports DescrptSeA')
        self.ntypes = descrpt.get_ntypes()
        self.dim_descrpt = descrpt.get_dim_out()
        # args = ClassArg()\
        #        .add('neuron',           list,   default = [120,120,120], alias = 'n_neuron')\
        #        .add('resnet_dt',        bool,   default = True)\
        #        .add('fit_diag',         bool,   default = True)\
        #        .add('diag_shift',       [list,float], default = [0.0 for ii in range(self.ntypes)])\
        #        .add('scale',            [list,float], default = [1.0 for ii in range(self.ntypes)])\
        #        .add('sel_type',         [list,int],   default = [ii for ii in range(self.ntypes)], alias = 'pol_type')\
        #        .add('seed',             int)\
        #        .add("activation_function", str ,   default = "tanh")\
        #        .add('precision',           str,    default = "default")
        # class_data = args.parse(jdata)
        self.n_neuron = neuron
        self.resnet_dt = resnet_dt
        self.sel_type = sel_type
        self.fit_diag = fit_diag
        self.seed = seed
        self.uniform_seed = uniform_seed
        self.seed_shift = one_layer_rand_seed_shift()
        #self.diag_shift = diag_shift
        self.shift_diag = shift_diag
        self.scale = scale
        self.fitting_activation_fn = get_activation_func(activation_function)
        self.fitting_precision = get_precision(precision)
        if self.sel_type is None:
            self.sel_type = [ii for ii in range(self.ntypes)]
        if self.scale is None:
            self.scale = [1.0 for ii in range(self.ntypes)]
        #if self.diag_shift is None:
        #    self.diag_shift = [0.0 for ii in range(self.ntypes)]
        if type(self.sel_type) is not list:
            self.sel_type = [self.sel_type]
        self.constant_matrix = np.zeros(len(self.sel_type)) # len(sel_type) x 1, store the average diagonal value
        #if type(self.diag_shift) is not list:
        #    self.diag_shift = [self.diag_shift]
        if type(self.scale) is not list:
            self.scale = [self.scale]
        self.dim_rot_mat_1 = descrpt.get_dim_rot_mat_1()
        self.dim_rot_mat = self.dim_rot_mat_1 * 3
        self.useBN = False
        self.fitting_net_variables = None
        self.mixed_prec = None